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ABSTRACT

Current low bit rate audio compression technology fails to
achieve a good quality for a wide class of audio signals. For
instance at 16 kbit/s and a 16 kHz sampling rate, LP-based
speech coders perform poorly on music signals, while sub-
band and transform coders cause audible artifacts on speech
signals. Speech/music discrimination is therefore an attrac-
tive approach to achieve better quality by switching between
two coding models – typically a linear predictive speech
coder and a transform coder. In this paper we propose a
multimode encoding strategy based on pattern recognition
techniques. We describe a set of discriminative features and
compare several signal classifiers. These are a K-nearest
neighbor classifier, a Gaussian mixture model and a multi-
layer perceptron.

1. INTRODUCTION

The objective of this paper is to describe the design of a
speech/music discriminator for audio compression. We con-
sider only audio signals sampled at 16 kHz and restricted to
the 50 Hz – 7 kHz bandwidth. This is the typical bandwidth
of videotelephony, videoconferencing and low bit rate In-
ternet audio broadcasting. Future wireless standards will
also support this bandwidth, yielding a face-to-face quality
for speech communication. The application foreseen in this
paper is not real-time duplex communications but specifi-
cally broadcasting. Therefore problems due to algorithmic
or buffering delay are circumvented. Relaxing the delay
constraint should also help in achieving a good discrimi-
nation performance.

1.1. Motivations and Objectives

This work is mainly motivated by the fact that there is cur-
rently no mature technology available for universal audio
coding at low bit rates (16 kbit/s, one bit per sample). The
control of audio quality often requires the user interaction
to select the best coder for a given communication context.
There are roughly two classes of low-bit-rate high-quality
audio coding systems. On one hand, speech coders usey This work was funded by VoiceAge Corp. and the NSERC.

analysis-by-synthesis and take advantage of vector quan-
tization, simple masking techniques, and linear prediction
which provides a loose model of speech production. Most
of them are currently derived from the Code-Excited Linear
Prediction (CELP) model [10]. On the other hand, audio
coders are built on a common basic framework. They em-
ploy frequency decomposition (a transform or a filterbank),
a perceptual model to adapt the stepsizes of scalar quantiza-
tion, and entropy coding. Typical instances of these coders
comprise the MPEG family including MPEG-AAC, Dolby
AC-3 and the ITU-T G.722.1 standard. At low bit rates none
of these two different approaches can guarantee good qual-
ity on both speech and music signals.
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Figure 1: Multimode audio coding by signal classification.

We propose here to use a multimode encoding strategy.
In this paper we restrict the mode selection to a speech/music
discrimination as described in Figure 1. The two coders op-
erate at the rate of 16 kbit/s and the decision is made on a
frame-by-frame basis. The design of the system is focused
here on finding a minimal set of parameters and a classi-
fier in order to minimize a classification error probability.
This criterion is however loose since even a human being
will not always be able to discriminate transients or mix-
tures of speech and music signals. The real design objective
is actually to provide a decision which improves decoded
audio quality by switching between two coding methods,
compared to using a single coding model.

1.2. Related Work

The speech/music discrimination problem is related to other
classification problems like gender and speaker identifica-
tion, which are based on feature extraction and statistical



pattern recognition. Therefore, classical feature extraction
and classification techniques can be applied to our problem.

In [8], a speech/music discriminator is used for audio
statistics. In [9, 11], a discriminator was designed for an
automatic speech recognition system for general audio data.
Parameters, such as amplitude and pitch features, mel-fre-
quency cepstral coefficients and zero-crossing rates, proved
to be discriminant [8, 11, 9, 6]. In [4], the classification is
based on line spectral frequencies and zero-crossing rates.

1.3. Outline of the Paper

The paper is structured as follows. The feature extraction
is first described in detail before presenting decision and
switching procedures. The discrimination results are dis-
cussed afterwards.

2. FEATURE EXTRACTION

Feature extraction is a classical front-end function of classi-
fiers. It is intended to reduce the dimension of the classifica-
tion problem, and also to ease the decision by illuminating
the regularities and variable patterns in input signals. Our
work is driven by the following basic principles:� The trajectory of a parameter is often more discrimi-

nant than its instantaneous value.� Information should be extracted in both time and fre-
quency.

    
−4000

−2000

0

2000

4000
music : 1s

In
pu

t s
ig

na
l

    

−2000

0

2000
speech : 1s

   
0

0.5

1

T
im

e 
en

ve
lo

pe

   
0

0.5

1

     
0

100

200

P
itc

h 
de

la
y

     
0

100

200

     
0

0.5

1

P
itc

h 
ga

in

     
0

0.5

1

Figure 2: Input signal, time envelope, pitch delay and gain
for music (left) and speech (right).

In total 5 features are computed by long-term statistics
over 500 ms. These are� the mean�e and variance�2e of the time envelopee,

� a voicing measurev computed from the pitch delayT
and gaingp,� the variance�2gp of the pitch gaingp, and� the variance�2ET of the energy in pitch harmonics.

The decision between speech and music is made on frame-
by-frame fashion every 20 ms frame with a lookahead of
480 ms, i.e. 24 frames of 20 ms. As a consequence the
decision is delayed by a 500 ms in total. A typical trajectory
for the envelope and pitch delay and gain is presented in
Figure 2. Note that each feature has to be normalized (in
the range [0,1] here) prior to classification.

2.1. Time Envelope

Speech signals alternate between high-energy voiced seg-
ments and low-energy unvoiced segments. Music signals
on the contrary are relatively stationary; their time enve-
lope evolves slowly except for strong beats. A simple way
to represent this observation is to compute the time-domain
envelope of the input signal. We compute the short-term en-
ergye[k℄ of the signalx[n℄ every 5 ms on frames of length
15 ms: e[k℄ = N�1Xn=0 wh[n℄jx[n� kN ℄j (1)

wherewh is a Hamming window of 15 ms length,n the time
index,N the frame length in samples andk the frame index.

2.2. Pitch Delay and Gain

Pitch delay and gain have proved to be efficient features for
discriminating speech and music [6]. For speech signals,
pitch tracking is reliable in voiced regions and ranges typi-
cally from 60 Hz to 120 Hz for male speakers, and from 120
Hz to 200 Hz for female speakers. The variation of the pitch
delay in voiced segments is quite smooth, but seldom null.
For music signals, these variations are either null or rapid.
Voiced segments usually have a normalized pitch gain near
unity whereas unvoiced segments have a very low gain. Mu-
sic signals usually have a more uniform normalized gain.

We use a cross-correlation based algorithm to find a
rough estimateT of the pitch delay every 5 ms, together
with the pitch gaingp. The value ofT is then refined by
using two frames on each side to improve the results. Af-
ter that, a voicing level measurev is defined over a 500 ms
frame. It tracks the slow evolution of the pitch by threshold-
ing the variation of the pitch delay over the decision frame.

2.3. Energy Ratio in Pitch Harmonics

Music is more stationary than speech. This property was ex-
ploited in [9] with frequency-based parameters. However,



this method achieves better results for frames larger than 1
second, and so does not apply well in our context. To re-
duce the dimension of features, we used a single frequency
feature: the energy ratioET in pitch harmonics. This is
motivated by the fact that for voiced speech, the energy is
located in the harmonics of the fundamental frequency. In
music, the harmonic structure usually arises from different
fundamental frequencies. To extract this information, we
compute the Fast Fourier transform (FFT) every 20 ms, and
use the pitch estimate to quantify the amount of energyET
in the frequency peaks corresponding to pitch harmonics.

3. DECISION PROCEDURES

After the parameter estimation, a decision has to be made on
the nature of the signal to control the switching between the
two coding models. This mode decision is a pattern recog-
nition problem. We present here several techniques for this
purpose. Three pattern recognition techniques are tested:
the K-nearest-neighbor classifier (K-NN), a classifier based
on Gaussian mixture models (GMM) and a multilayer per-
ceptron network. A brief description of these classifiers is
presented below.

3.1. K-Nearest Neighbor Classifier

K-nearest neighbors classification is a non-parametric tech-
nique of statistical pattern recognition. It gives a local esti-
mate for the density function of different classes around an
unclassified point [3]. A search is done into a set of pre-
viously classified points to find their K-nearest neighbors.
The Euclidean distance is commonly used as the neighbor-
hood metric. The most represented class among these K
points is assigned to the unclassified point.

The disadvantages of this technique are the need to store
a large number of vectors to have an accurate estimate for
the density functions, and the number of distances to com-
pute. A remedy to these problems is to condense the num-
ber of stored vectors by leaving only a set of representative
vectors. This can be made by learning vector quantization.

3.2. Gaussian Mixture Model

A Gaussian mixture model is a statistical parametric tech-
nique which models each class of data by a linear combina-
tion of several multivariate Gaussians in the feature space.
We have to find the maximum likelihood modelLi(x) of
each classi: Li(x) = nXi=1 �iG�i;�i(x); (2)G�i;�i(x) = 1(p2�)dpj�ije� 12 (x��i)T��1i (x��i); (3)

wheren is the number of Gaussians,d is the dimension of
the data, and provided thatnXi=1 �i = 1: (4)

The mean vectors�i, the covariance matrices�i and the
weights�i of the Gaussians can be iteratively derived by
the expectation-maximization algorithm [7].
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Figure 3: Gaussian mixture modeling of a two-dimensional
distribution.

Figure 3 illustrates a Gaussian mixture model for a two-
dimensional distribution. The ellipses represent the covari-
ance matrix of each Gaussian, centered on their mean. In
practice, the number of Gaussians has to be determined ex-
perimentally.

3.3. Multilayer Perceptron

Multilayer perceptrons [5] are a powerful pattern recogni-
tion approach, but they are difficult to design. The design of
the network architecture is usually based on heuristic meth-
ods. In this paper, we consider only multilayer perceptron
networks with one hidden layer of nodes. Only one output
node is required because there are only two classes to be
discriminated. We employ the back-propagation algorithm
for optimizing the network parameters. It defines a non-
linear separation for multi-dimensional space based on the
training database.

4. SWITCHING PROCEDURES

It is very important to avoid classification errors for several
reasons. Firstly, the human ear is sensitive to the inter-frame
evolution of the signal. Secondly, most of speech and audio
coders operate with a memory (e.g an adaptive codebook
in CELP coding, or the previous MLT coefficients needed
for overlap-add synthesis in the G.722.1 standard). Switch-
ing from one mode to another requires to reset the internal



coder state. Finally, Coding distortion at the current frame
depends on the mode (speech or music) selected at the pre-
vious frame. And different coding models may introduce
perceptually different coding noise.

We propose here to use a hysteresis based on the previ-
ous decision or state latency decision to stabilize the mode
selection. Such high-level logic can force efficiently the co-
herence of the decision.

Another important aspect of the discrimination is also
how to handle switching when a transition or short-term si-
lence occurs. It is essential to tune the time response of
the discriminator. Yet, the faster it reacts, the more it may
switch. Furthermore the discriminative capacity of parame-
ters proved to be very dependent on the length of the deci-
sion frame. We achieved satisfying trade-off by varying the
lookahead of decision frame.

5. RESULTS

The composition of the training database is a critical part of
the discriminator design, since it must represent all possi-
ble realizations of the signal. The speech training database
is multilingual and composed of phonetically balanced sen-
tences. The music training database is composed of differ-
ent kinds of music, like rock’n roll, rap, country, techno and
classical music. The training database comprises in total
117876 frames of 20 ms.

The test database must also be composed of various seg-
ments to test the classification robustness and stability. Ob-
viously the classification performance is strongly dependent
on test conditions, such as the noise level, the number of
transitions between speech and music and the superposi-
tion of speech on music or vice versa. We used two dif-
ferent ways to evaluate the discrimination performance. We
first tested the system with a database comprising 136863
frames of speech and music. It gave a good overview of the
statistical average performance. The discriminator was also
tested in harsh real conditions by using another test database
consiting of 10941 manually classified frames with multi-
ple transitions, high noise level and mixtures of speech and
music. Such conditions are typical in the context of audio
coding.

5.1. Discrimination Statistics

The classification performance is presented in Table 1. It
was significantly improved by using an hysteresis. Note that
this technique was not used for the K-nearest neighbor clas-
sifier.

The Gaussian mixture models and K-nearest neighbor
classifier outperformed the perceptron. The Maximum Like-
lihood (ML) is a subcase of GMM, where each distribution
is modeled by only one Gaussian. We observed that increas-

Table 1: Estimated average error probabilities.

Classifier Without With
Hysteresis (%) Hysteresis (%)

ML 6.70 4.02
2-GMM 6.72 4.50
5-GMM 6.15 2.64
10-GMM 7.96 5.20
20-GMM 8.03 4.55

1-NN 12.17 .
3-NN 7.84 .
5-NN 6.03 .

perceptron
[25 hidden nodes]

9.02 7.73

ing the number of Gaussians does not bring any improve-
ment beyond a certain number. The K nearest neighbor
classifier is accurate, but computationally very demanding.
Clustering like learning vector quantization or tree-search
vector quantization could lower its complexity. The number
of hidden nodes in the multilayer perceptron was selected
after several attempts.

Table 2: Error rates for hard context decision.

Classifier Without With
Hysteresis (%) Hysteresis (%)

ML 17.46 12.25
2-GMM 14.65 11.39
5-GMM 15.36 11.44
10-GMM 14.79 10.36
20-GMM 14.54 10.28

1-NN 19.60 .
3-NN 16.65 .
5-NN 16.27 .

perceptron
[25 hidden nodes]

17.45 11.95

The results for the hard decision context are presented in
Table 2. We observed that most of the errors occured during
speech and music mixtures, transient, or silence and noise
segments. Again the introduction of an hysteresis was sig-
nificant. It improves classification results because it takes
previous decision into account. It prevents the encoding
system from switching unexpectedly.

5.2. Subjective Audio Quality

The speech/music discriminator has been inserted into a two-
mode audio coder operating at 16 kbit/s. In addition, one bit
per frame is needed to describe the selected mode, as shown
in Figure 1. The speech coder was an ACELP coder – sim-
ilar to that of [1]. The music coder was an implementation



of the G.722.1 coder based on the description given in [2].
Its bit rate was reduced to 16 kbit/s.
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Figure 4: Discrimination result : construction by hand (top),
discriminator output (bottom) for speech (0) and music (1).

Figure 4 presents a typical example of our speech/music
discrimination versus manual classification. The coder met
the requirements of achieving a better quality for the de-
coded audio. However a few open problems remained. The
switching is very criticial, and it may cause a few artifacts.
The main problem with the coders is due to coder mem-
ory. CELP coding is based on adaptative codebooks, and
the G.722.1-based coder needs previous MLT coefficients
for overlap-add synthesis.

6. CONCLUSION

This paper presented an application mixing both audio cod-
ing and pattern recognition techniques. A speech/music dis-
criminator was designed to bridge the gap between speech
and transform coders, and to give an open-loop decision
for controlling an adaptive switch. The objective was to
improve the quality of broadcasted audio by switching au-
tomatically between two coders. The overall algorithmic
complexity is lower than in a closed-loop decision proposed
in [1]. Furthermore the classification error rate was de-
creased by an ad hoc high-level switching procedure.

It is important to note that the problem coped in this
paper and the proposed solution will be obsolete once a ma-
ture universal audio coding model is available. However in
short-term the proposed solution is attractive.
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