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Abstract - In this paper we summarize some results derived earlier 
for the mean-square channel distortion of an autoregressive moving 
average (ARMA) vector quantizer with a maximum entropy encoder 
when the channel is assumed binary symmetric and memoryless. We 
discuss the required assumptions and their practical consequences 
in index assigment of ARMA vector quantizers. The discussion 
relates also to channel optimization of these quantizers. Further- 
more, we compare noisy channel performance of memoryless, 
moving average, and autoregressive two-stage vector quantizers in 
line spectrum frequency quantization applied to wideband speech 
coding. 

1. INTRODUCTION 

A predictor is customarily neglected when index assignrnent 
(IA) of an ARMA vector quantizer is considered. The channel 
distortion equation derived in [ I ]  for a memoryless binary sym- 
metric channel shows that this simplification may lead in some 
cases to a naively set IA problem. The derivation relies on the 
maximum entropy encoder assumption and requires that trans- 
mitted symbols at different time instants are statistically 
independent. However, empirical results in [ I ]  indicate that the 
channel distortion expression is approximately valid in more 
practical conditions for small bit error probabilities. Therefore it  
provides a useful tool for assessing and optimizing the noisy 
channel performance of ARMA vector quantizers. Our objective 
is to extend this discussion by clarifying the assumptions needed 
and presenting new simulation results. 

We will introduce notation and basic concepts in Section 2. In 
Section 3, we will then summarize briefly the analytical expres- 
sion introduced in [ 11 for the channel distortion of ARMA vector 
quantizers. We will also show how this expression can be used in 
IA optimization and discuss the assumptions. These issues will 
be examined further in Section 4 in the context of line spectrum 
frequency (LSF) quantization applied to wideband speech cod- 
ing. We will also compare the channel error resilience of several 
predictive two-stage vector quantizers. These simulations aug- 
ment the viewpoint from the narrowband case in [ I ] .  

The reader is referred to [2] for an extensive discussion 
regarding predictive vector quantization (VQ), and [3] for a 
thorough tutorial on index assignment. 

2. PRELIMINARIES 

In this paper, we address the ARMA vector quantizer 
' ' A  ' 1 ,  

P =  I k = O  
f ,(t)  = C Akfs(t-  k )  + Bkus(t - k )  

f 

= H k u s ( t - k )  
P = O  

where is(') is the reconstruction of the source vector y(t) at the 
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Figure I .  Subsystem of an ARMA vector quantizer. 

encoder and u,(t) is the codevector at discrete time instant t 2 0. 
The vectors fs(t), y(t) and us([) are rn-dimensional. The nz by m 
coefficient matrices A, and B, define the predictor. Usually Bo is 
set to an identity matrix. We utilize the impulse response repre- 
sentation for the predictor and denote the kth impulse response 
matrix by H,. The codevector u,( t )  is selected among the col- 
umns of the m by n codebook U = [U(, U, . . . U, - ,]. 

The index of the selected codevector us([) = U ; ,  i e  I =  
{ 0, I ,  . . ., n - 1 1, is transmitted over a channel to a decoder. The 
decoder receives the index j E I which may differ from i due to 
a channel error. The transmitted and received symbols are 
denoted by s ( t )  = i and r ( t )  = j ,  respectively. The decoder recon- 
structs the quantized approximation fR(t) of the source using the 
received codevector U,([) = uj. The system excluding the selec- 
tion of us(t) is depicted in Fig. 1 .  

We describe the channel by its transition probabiliriesp( j I i )  
= P( r(t) = j I s(t )  = i ) .  They as well as the trartsrnission probabil- 
ities p(i) = P(s(r) = i )  are assumed time invariant. It should be 
pointed out that we assumed in ( 1 )  the source to be zero-mean for 
notational convenience. Moreover, we require ( 1 )  to be asymp- 
totically stable. This requirement is always fulfilled in practice, 
since otherwise the system could not be realized. 

3. CHANNEL DISTORTION IN ARMA VQ 

The performance related to the transmission of information 
across the channel is measured by the irtsrurztuneous chonnel dis- 
torrion d ( t )  = E(llis(t) - fR(t)l12) in terms of the squared 
Euclidean norm. This is the component of the instantaneous end- 
to-end distortion incurred only by channel errors. More particu- 
larly we are interested in the average performance over an 
infinite time interval, 

D = lim (d(0) + cl( 1 ) + . . . + d(r - 1 )) / t  . ( 2 )  
f + -  

The limit exists due to the posed stability and time-invariance 
assumptions. In [ l ] ,  the channel distortion D was derived for 
maximum entropy encoders (for which p(i)  = 1 / n )  assuming that 
the symbols transmitted at different time instants are indepen- 
dent. The main result of [ I ]  is summarized in the following 
proposition. 
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Proposition: Assume that a maximum entropy encoder and a 
memoryless binary symmetric channel produce symbols s ( r )  
and r ( t )  that are independent of s(t - k) and r(t - k )  for all k # 
0. Then 

D = cc (UI - U/)TP(U, - ~ , ) P ( m ( ~ l  U >  (3 
k I E I  

where 

P = ~ H T H ~ .  
P = O  

(4) 

The derivation of the proposition in [ I ]  utilizes the equation 

in which C, is the covariance matrix 

and u, ( t )  = u,(r) - u,(t) is the error between the transmitted 
and the received codevector. In ( 5 )  tr stands for the trace of a 
matrix. A general expression of C, needs a description for time 
dependencies remaining in the transmitted symbols sequence, 
but a more tractable expression is obtained utilizing the assump- 
tions of the proposition. This also simplifies the channel 
distortion to the form (3). 

The matrix P characterizes the effect of the predictor in (3). 
It can be factored with a square root decomposition, e.g., as P = 
P'/2P'/2. Thus we get the transform vi = P"'ui, and (3) becomes 

(7) 
I . / E I  

This is the well-known channel distortion equation of memory- 
less VQ, but for the rotated and scaled codebook V = P'12U. 
Hence most results obtained for memoryless VQ can be general- 
ized readily for ( I ) .  Obviously the index assignment design of 
memoryless VQ can be applied to the transformed codebook V. 

However, we can often justifiably omit the predictor in IA 
design. Namely, (3) is bounded by 

in which h,,, and h,,, stand for the smallest and the largest 
eigenvalue of P. The symbol A denotes the channel distortion 
obtained by setting P in (3) to an identity matrix. The first ine- 
quality in (8) follows from the definition of P, which implies that 
Am,, 2 1. Equation (8) has an important implication; when all 
eigenvalues of P are equal, (3) returns to the classical channel 
distortion scaled by a scalar. lntuitively the gain of incorporating 
P in the IA design decreases as the ratio h,,,/h,,, tends to one. 

It should he noted that the discussion and results above are 
approximately valid also for non-maximum entropy encoders as 
the bit error probability is small in  a sense its powers higher than 
one can be discarded. The property can be proved using this 
commonly employed assumption to the results of [ I ] .  

We also assumed the transmitted symbols s ( r )  and s(r - k) to 
be independent fork # 0. In other words, the transmitted symbol 
sequence is not allowed to contain residual information. This 
requirement is hard to meet fully in practice, albeit a properly 
designed predictor reduces significantly the time-dependency of 
a correlated source. The results in [ I ]  demonstrate that ( 3 )  is able 
to characterize the empirical channel distortion at small bit error 
probabilities regardless the posed assumptions are not valid. 
Thus (3) provides a widely applicable expression for analyzing 

the channel distortion of ARMA VQ. The result can also used as 
a basis for deriving computational methods for improving the 
noisy channel performance of such systems. 

Before proceeding to numerical examples, it should be 
observed that for scalar quantizers the proposition above returns 
to a classical result introduced in [4]. 

4. NUMERICAL EXAMPLES 

Experimental Setup. Linear prediction analysis of order 16 is 
done at every 20-111s frame using a Hamming window of 40 ms 
centered on the current frame. The input signal sampled at 
16 kHz is band-pass filtered to 25-7000 Hz, and emphasized 
with the filter H ( - ' )  = 1 - 0.75;-' prior to further processing. 
Autocorrelation coefficients are windowed to gain a bandwidth 
expansion of 60 Hz and white noise correction of le-4. After 
that the filter coefficients are solved with the Levinson-Durhin 
algorithm, and converted into the LSF representation for 
quantization. 

Line spectrum frequencies are coded using a two-stage quan- 
tizer of 44 bits. The first stage is divided into nine- and seven- 
dimensional splits having eight and six bits, respectively. The 
second stage comprises five splits of six bits; the first four splits 
are three-dimensional and the last one is four-dimensional. Thus 
in total 14 bits are allocated for the first stage and 30 bits for the 
second one. All quantizers to be studied have the same split 
structure and bit allocation. 

Codebooks and diagonal coefficient matrices for (1) are opti- 
mized sequentially applying the generalized Lloyd algorithm 
according to [SI. The estimation data comprises 149 000 frames 
corresponding to about SO minutes of audio material. A separate 
data set of 25 000 frames is used for evaluating the performance. 
The databases comprise mainly speech in several languages, but 
also some music samples from different genres. We do not use a 
weighted norm in encoding, although it could be employed to 
improve the performance. The M-L search [SI is used in estima- 
tion with 16 survivors, and with 4 survivors for validation in 
order to reduce the complexity to a tolerable level. 

Note that the discussion in Section 3 can be extended straight- 
forwardly for multi-stage vector quantizers, albeit some further 
assumptions are needed. That is, all symbols related to different 
stages and their splits have to be independent. After this the splits 
can be considered separately. 

We optimize index assignments of quantizers using the 
binary switching algorithm [6] with estimated transmission 
probabilities. The quality of a local minimum found by the algo- 
rithm affects considerably the performance. Hence we run the 
algorithm 2000 times starting from a random initial value, and 
select the best IA for use. 

Spectral Disrortion Statistics. Noiseless channel performance 
of some ARMA(n,, 12,) vector quantizers is summarized in 
Table 1 in terms of the average spectral distortion SD. The per- 
centage of frames in which spectral distortion exceeds 2 dB is 

Table I .  Performance in a noiseless channel 

SD [dBl SD? [%I h,,, I,,,, J.- MAO) 1.07 1.46 

AR(1) 0.86 1.14 2.43 4.41 
ARMA(I,I) 0.85 0.93 1.87 3.53 
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Figure 2. Empirical channel distortion for the MA(0) and ARMA( 1, 1) 
quantizers shown by thick and thin lines, respectively, for both random 
and optimized IAs. Optimized IAs have been marked by circles. 

Figure 3. Normalized channel distortion (3) at the bit error probability 
le-3 for the first stage with (thin line) and without (thick line) the 
predictor in IA optimization. 

denoted by SD,. Spectral distortion, see e.g. [SI for the defini- 
tion, is evaluated over the 50-7000 Hz band. Unstable filters are 
stabilized before computing the statistics by reordering the LSF 
parameters. 

Noisy Channel Perjormance. The eigenvalues in Table 1 
indicate that the ARMA(1, 1 )  quantizer may be very sensitive to 
channel errors. Therefore we select i t  for a more detailed case 
study. The noisy channel performance of this quantizers is com- 
pared in Fig. 2 to the memoryless vector quantizer. The channel 
is simulated using a uniform bit error probability e for all bits of 
one stage and keeping another stage error free. The results are 
averaged over 5 runs. Fig. 2 shows that IA optimization yields a 
significant performance gain over random indexing. For exam- 
ple, SD drops from 0.4 to 0.2 dB, and SD2 from 6.6 to 3.1 % for 
the first stage at e = 1.5e-4. However, the quantizer is still con- 
siderably more sensitive to channel errors than the memoryless 
and MA quantizers listed in Table I .  They give the performance 
measures SD = 0.1 dB and SD, = 2 %. The MA quantizers pro- 
vide the best end-to-end performance until e = 5e-3, and lose 
the advantage to the memoryless quantizer after that. 

We observed that the matrix P had a minor effect in the IA 
design. The performance loss caused by ignoring it was only a 
few percents at maximum. This is explained by relatively small 
values of hmdx/hmin. Moreover, the initial index assignment used 
in the optimization affects considerably the outcome so direct 
comparisons are difficult. The performance gap between the best 
and worst minimum found in 2000 runs was more than 15 % in 
terms of the mean-square distortion used as the optimization cri- 
terion in the binary switching algorithm. 

To assess relation between the channel distortion and the 
ratio h,,,/h,,,,, we evaluate (3) separately for both splits in the 
first stage of the ARMA( I ,  1 ) quantizer using a scaled P matrix. 
The codebooks are kept untouched. The kth eigenvalue is scaled 
as hk := h,,, + r( hk - h,,,,,) in which r = (h  - ?~,,,, ,)/(h,~~ - h,,,) 
and h is the greatest eigenvalue after scaling. This yields the 
desired value to the eigenvalue ratio but maintains h,,,, constant. 
Other eigenvalues change linearly. Originally the series (4) gives 
thediagonalmatrixP=diag(l.9,2.2,2.7,3.5,2.9,2.8,2.7,2.7, 
3.0) for the first split. The series (4) converges quickly for this 
predictor, since all poles are strongly inside the unit circle. It 
should be noted that this example is artificial and does not relate 
directly to the actual quantization problem. 

Fig. 3 presents the normalized channel distortion D/m as a 
function of hmaX/hmin with and without incorporating the predic- 

tor in the IA design. The curves have been averaged over 200 
runs. The performance gain is small but increases consistently 
with the eigenvalue ratio. However, the gain was over I O  % in 
some individual runs started from the same initial 1A. 

5. CONCLUSIONS 

In this paper, we studied the error resilience of ARMA VQ 
and extended earlier discussion regarding the channel distortion. 
The results show that the predictor can often be omitted from the 
IA design, but this has to be verified by examining the eigenval- 
ues of the P-matrix. Though this approximation is not always 
valid, its influence to the performance is small compared, for 
example, to the quality of a local minimum attained in 1A 
optimization. 

The channel distortion expression can be applied further to 
channel optimized VQ. Equation (3) is particularly useful for 
channel optimization of MA vector quantizers, since in this case 
channel distortion and coefficient matrices have a simple rela- 
tion. In  [7], channel optimization has been studied in the context 
of AR VQ. However, an optimization criterion has been derived 
by taking into account time dependency in transmitted symbols 
and simplifying the outcome using different assumptions than in 
this paper. The relation of these approaches deserves further 
examination. 
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