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n — oo.) Naturally, we defian|/% as the density ofi’. Now Near-Ellipsoidal Voronoi Coding

we can defing:), (R) as the counterp%rt of"(R).

The authors of [2] proved (in a somewhat different formulation) that
for all fixed R there is a constant(R) such that,,(R) < ¢(R).
The constant(R) was not computed explicitly, but a careful reading
reveals that it should be at least for some constant > 1. Repeating  Abstract—in this correspondence, we consider a special case of Voronoi
the proof of Theorem 1.2 for one-sided codes (a minor modification ésding, where a lattice A in R™ is shaped (or truncated) using a lattice
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needed) we can prove the statement of Theorem 1.2fofR) and A’ = {(mlml,)--e- ’(@{l:c{%)l(la::}l)’ g -’c?r)] Et Ah} _forafitﬁed m =~
; My ceny, My , ™. Using this technique, the shaping
(consequently) improve the bound g, (R) to orderR log R. boundary is near-ellipsoidal. It is shown that the resulting codes can be
Theorem 4.1: Given a pair of positive intege® > R, > 1 indexed by standard Voronoi indexing algorithms plus a conditional mod-

- ification step, as far asA’ is a sublattice of A. We derive the underlying
yl-i1 (L])H*H’l (RH )_1J.lljs(31) conditions onm and present generic near-ellipsoidal Voronoi indexing al-

T (R) < v — = gorithms. Examples of constraints orrm and conditional modification are

1—eryhr provided for the lattices A,, D,, (n > 2) and 2D} (n even> 4).

holds for gny pair of positive constantsandy satisfyingy > 1 and Index Terms—Lattice, lattice codes, lattice indexing, Voronoi coding.
1—e"y™ > 0.

Then we have the following.

I. INTRODUCTION
Corollary 4.2: ForallR > 3 We address the problem of designing (near-)ellipsoidal lattice codes
1t (R) < e(Rlog R+ log R + loglog R+ 1)u’, (1) W?th fast indexing algqrithms. The mc_)Fivation for thi_s work Iies_ in
_ wide-band speech coding. More specifically, we are interested in de-
Notice that here we do not know whethe¥, (1) = 1. signing low-complexity high-dimensional algebraic spectrum coding

The minor modification we need in the proof of Theorem 4.1 is dl}éased on a Gaussian mixture model [6], which implies construction of

to the fact that the one-side balls have different volumes. Itis not ha?é),setst.to quarr:ltlzhe corretlateq Glau?s:jqndvgctf(; sourtlzgs. di te set
however, to overcome this obstacle. By the binomial distribution, thc? al Ifei}v\{\':hlc t?re exfenswe )ﬁ' udie !Irl][ ],%re |hnear IISCIrett? sets
fraction of vertices of-5 with weights more thar: + 10R/nlogn orpoints. YMithout loss of generaity, we wil consider nere only 1attices

n ; . defined inR™. A lattice code is defined by selecting a finite subset
or less than> — 10R+/nlogn is o(1/n) (10 can be replaced by a . . N o
2 nlogn IS o(L/n ) ( P y ?é a lattice. Lattice codes find important applications, such as coded

smaller number), S0 it suffices to focus on the vertices with Weighmodulation and vector quantization. They are known to yield potential
betweeny — 10R+/nlogn and & + 10R+/nlogn. The one-sided . ) .
2 NG z + nlos good performance—complexity tradeoffs and to be asymptotically good

balls centered at these vertices all have volume approximé(téﬁ). in certain conditions

We leave out the details which might serve as an exercise. . ) . . .
Given a lattice, two important steps are required to implement a lat-

tice code.
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(a) Voromnoi code (b) near-ellipsoidal Voronoi code

R=2 m = (12,4)

Fig. 1. Example of Voronoi codes fox = A,. (a) Voronoi codeR = 2. (b) Near-ellipsoidal Voronoi coden = (12, 4).

Ellipsoidal lattice codes have been already proposed in the literat@@nvention ford/(A). In other words, ifk isin 2", x = EM(A) gen-

[4], [7]-[9]. However, the latticeZ used in [7] provides no granular erates a point itk andzM (A) ™" retrieves the related basis expansion
gain. The technique of [8], [9], which generalizes spherical shaping By The lattice can then be written as

enumerating lattice points on ellipsoidal shells, has a complexity in-

creasing exponentially with the lattice dimension and the bit rate of the A={kM\)|kez"}. (5)
code. To avoid these limitations, we present a special case of Voronoi

coding [1], [2] which yieldsiearellipsoidal lattice codes with fastin- N @ lattice, all Voronoi regions are congruent [10], and we can con-
dexing algorithms and minimal storage. Some early versions of the ider only the region related to the origin, denoted\ ).

gorithms presented hereafter were introduced in [4], [5]. We will use, more specifically, foh the latticesd-, D.., and2D;t.

The correspondence is organized as follows. We proceed with the A§ese lattices are all defined and specified by a generator matrix in
tations and basic definitions, and review Voronoi coding in Section [i10]- However, for the sake of completeness and clarity, the generator
Near-ellipsoidal Voronoi codes are defined and studied in Section Iatrices used herein are all defined in the Appendix. Note that we use
As we shall see later, the lattice shaping introduced here is constraifEdy lower triangular generator matrices, which will be an important
and the related indexing algorithms comprise a step, cathedition Property to simplify later the near-ellipsoidal Voronoi indexing algo-
modification which may be tailored for each lattice. We will use, irfithms.
particular, the latticests, D, (n > 2) and2D; (n even> 4) for the Following [3], if A’ is a sublattice oft, |A/A'| refers to the order of
purpose of illustrating the related constraints and conditional moditPe lattice partition\ /A",
cation. The conclusions come in Section IV.

B. Voronoi Coding
Il. PRELIMINARIES Given a latticeA in R™, a Voronoi code [1] can be defined as=
AN (2" V(A)+a), whereR is an integer greater thanhanda is
an appropriate offset iRR™ set to fix ties (i.e., to ensure no point of

The notatiorlN \ {0, 1} refers to the set of integers greater tHan A is on the boundary of the shaping region). The code siz€ @

The scalar operatofs| and[-] round any input irft to the nearest |5 /27| = 2"%_ This definition differs slightly from the original. In
integer inZ toward—oc and+oco, respectively. [1], the Voronoi codeC is translated by-¢ and is usually zero mean;

Vectors are denoted with a bar in subscript, while scalars are denoggd difference has, however, no influence on the Voronoi indexing al-
in italics. The row convention is used for vectors. Ean R™, theith gorithms. The extension of Voronoi coding to lattice shaping by geo-
element ofx is denotedr; so thate = (1, ..., 2,). metrically similar sublattices [2] is not considered here.

To describe later Voronoi indexing algorithms, we need to intro- \jth this definition, a Voronoi code can be viewed directly as the
duce the vector operatorsod, mult, anddiv, which denote the ele- tryncation ofA by the Voronoi region’ (A ) scaled by ™ and translated
ment-wise modulo, multiplication, and division of two vector operandsy , asillustrated in Fig. 1(a). Itis also possible to interpret the shaping
respectively. For: andy in R, j in 2" andm in (N\ {0, 1})",we  regjon as’(2"A) + a, where2” A appears to be a shaping lattice [2].
have The advantage of this point of view is th@t can then be viewed as
the set of (minimum-norm) coset leaders of the partitlgf2 A [2].

A. Notations and Basic Definitions

mod(j, m) = (ji(mod m1), ..., ju(mod mn)) (1) Voronoi shaping may also be interpreted as a modulo operation with
mult(z, y) = (¥1y1, -+, TnYn) (2) lattice operands [10].
. Voronoi shaping yields index-optimized lattice codes since there
div(z, y) =(21/y1, ...\ @n/Yn) (3)  exist some elegant indexing algorithms f6r which rely on lattice

. decoding and modular arithmetics [1].
wheremod is the scalar modulo operator. 9 [

In this work, we will consider only full-rank lattices iR". In the
general case, a lattice B* is denoted\ and is defined as 1. NEAR-ELLIPSOIDAL VORONOI CODES

n A. Definition (With Restrictions ont)
A={kv,+-+ ko, |k €Z"} (4) _ . L . . )
Given a latticeA in R™, a near-ellipsoidal Voronoi code is defined

where{v,}, .., is asetof linearly independent vectordifi. These asC = AN (V(A') + a), where
vectors, when stacked on top of each other, form a matrix, called a gen-
erator matrixM (A) of A. It is important to note that we use the row A ={(mizi, ..., muz,)|z € A}. (6)
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The vectormn in (N'\ {0, 1})" is constrained here so that is a sub-
lattice of A. The offsetz in R” is chosen to fix ties. The regidri(A'),

which is the Voronoi region of\’, corresponds to the regidii(A)

scaled in each dimension according to the elements.ofhis lattice
shaping is illustrated in Fig. 1(b).

Property: The size ofC' is]_, m
Proof: The proof follows directly from [2]. IfA’ is a sublattice
of A, the size ofC is [A/A’|. It is easy to verify from the definition of
A’ that

A= A+ EM(A). )
k€EZ™ such that
0<k; <m; for 1<i<n
Therefore there arf[_, m. cosets of" in A, i.e.,
[A/A| = Hmi. d

=1

B. Admissible Voronoi Modulos

We address here the problem of findingllin (N '\ {0, 1})" so
that the lattice\’, defined in (6), is a sublattice df. The solution we
propose is based on the following theorem.

Theorem: A’ is a sublattice of\ if and only if
Q =M (MN)diag (mq, ..., mn)I\J(AYI

is a matrix of integers.

Proof: The proofis simple. We assume first thidtis a sublattice
of A. We start by observing that the rows &f(A) are inA, and the
rows of M (A)diag (m1, ..., m,) are inA’. SinceA’ is a sublattice
of A, the rows ofdM (A )diag (m1, ..., m,)arealsoin\. Each row of
M(A)diag (m1, ..., m,) multiplied by M (A)~" will thus give the

expansion in a basis df in terms of integer coordinates. Consequently,

Q = M(A)diag (m1, ..., mn)M(A) "' is a matrix of integers.

To prove the converse part, we now assumedhita matrix of inte-
gers. A point\’ in A" may be expanded & = kM (A'). This can be
also written as\" = kM (A)diag (m1, ..., my) from the definition
of A’. Using the assumption\’ M (A) " will be a vector of integers,

which implies that\’ is obtained by an integral combination of a basi

of A. Thus,A’ is a sublattice of\. O

By using the above theorem, we can derive the conditions dar

1817

TABLE |
ADMISSIBLE VORONOI MODULOS . (BY DEFINITION m IS ALSO
CONSTRAINED TOBE IN (N '\ {0, 1})"

Lattice Constraints on m
A, m; and my have the same parity
(i.e. m € Dy)
D, my, -+ ,my, all share the same parity
(n>2) (i.e. m € 2Dy)
2D} my,--- ,m, all share the same parity
(n even >4) | and Y 7 | m; is a multiple of 4
(m € 2D;)

is an integer matrix. Without loss of generality, we fofeg A) to be
lower triangular. Then it is easy to show thatis lower triangular and

has diagonal elements, ..., m,, i.e.,
mi
2 1 M2
Q= (8)
Qp 1 N n—1 my

It then follows that ifm € A, m is an integer vector. Moreover, it is
easy to check that the sdt is nonempty and has an additive group
structure. We can then conclude that the4ét an integer lattice, i.e.,
a sublattice ofZ". The proof is complete by noting that admissible

vectorsm are defined ifN \ {0, 1})™ N A. O
C. Examples of Constraints an
For the latticed., the condition becomes
m1 0 . mi 0
Q= M(Az) M(Aq2)™ = mi — mso 9)
mo T mo

where M (A4-) is set as in the Appendix. We obtain that andm.
must have the same parity (either even or odd). Using the generator
gnatrlcesu(D ,) and M (2D;}) defined in the Appendix, we obtain
for D,, thatm,, ms, ---, m,, must have the same parity; the same
constraint applies faD;", butm, +- - - +m,, mustalso be a multiple
of 4. These results are summarized in Table I.

A’ to be asublattice of . Note that the criterion is invariant with respect

to any scaled integer orthogonal transformatiomofif M (A) is a
generator matrix oft\, any matrix of the formcT'M(A) specifying
the latticecA, wherec is a scaling factor an@ an integer orthogonal
matrix (det T = +£1), yields identical constraints an. However, in
generalt two generator matrice® (A, ) andM (A-) of two equivalent
latticesA; and A, yield different conditions omn.

Corollary: The admissiblen are points fromN\ {0, 1})" N A
whereA is an integer lattice which is a function af.
Proof: We denote by the set of vectors: in R™ such that

Q = M(A)diag (m1, ..., mp)M(A)™

IFor instance, the constraints an differ for the two equivalent lattices
A, = 77 andA, = D..

D. Indexing Algorithms: Generic Framework

Voronoi coding, as introduced in [1], is an elegant lattice shaping
technique yielding generic indexing algorithms. It is desirable for near-
ellipsoidal Voronoi codes to keep this attribute, and to minimize algo-
rithmic changes to the original framework of [1]. We will show here
that, as long as: is an admissible Voronoi modulo, a near-ellipsoidal
Voronoi codeC' specified in a lattice\ by m anda can be indexed
using the algorithms presented in Fig. 2. Note that the iddexig. 2
is not scala?, but rather a vector of integers which satiéf k; < m;
fori € {1, ..., n}. Consequently, there af¢._, m; possible values
for k.

2To form a scalar indeX<, the elements of a near-ellipsoidal Voronoi index
k can be easily multiplexed (e.dg§ = k, [[/_, m;+ k2 [[[_, m; 4+ - --
+ k,_1m, + k,). The size ofK is [log, (H? m;)] bits.
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Encoding algorithm: codevector A € A — index k

1. Compute j = AM(A)~!
2. (a) Compute Iz, - -+ ,l, from j, m and Q conditional modification
(b) Compute j' from j, Iz, ,I, and Q step

3. Compute k = mod(j’,m)

Decoding algorithm: index k — codevector A € A

1. Compute z = kM (A)

Compute y = div(z — a,m)

2
3. Find the nearest neighbor z of y in A
4

Compute A = z — mult(m, z)

Fig. 2. Indexing algorithms for a near-ellipsoidal Voronoi code.

1) Decoding Algorithm: We will begin with the decoding algo- encoding algorithm by applying a conditional modification and an el-

rithm of Fig. 2 which maps an indek into a code vecton. This

ement-wise modulo. The principle of the conditional modification is

algorithm is a straightforward generalization of [1]. The detailed steggplained next.

1-4 are summarized below as follows:

A=z —Qpr(z—a) (10)

where@, denotes the nearest neighbor search operation in the Iga

tice A" andz = EM(A). It follows from (10) that allA generated
by decoding will be in the near-ellipsoidal Voronoi code It is now
important to verify that two different indexdsandk’ will generate
two different code vectors i@'. This follows directly from the fact that
(10) may be interpreted as a lattice-modulo operation appliet. dio
conclude this part, it can be verifiedhat for the decoding to produce
points inA, A’ has to be a sublattice of.

2) Encoding Algorithm: Conversely, the encoding algorithm of
Fig. 2 maps a near-ellipsoidal Voronoi codevectanto an indexk.

If M(A) is specified as a lower triangular matrix, the maifjxis
lower triangular and has diagonal elements .. .,
in (8). Moreover, ifm is constrained such that is a sublattice of\,
has integer elements. Using (8), we can write (13) as a system of
uations

m,,, as described

(1 =k — (mili +az1la+ -+ an 1ln)
J2 = ko — (mala 4+ ag 2ls + - - + an, 2ln)
(15)

jn—l = kn—l - (7n'n—lln—l + an,n—lln)

\jn = kn — mply.

We describe here the principle of the conditional modification step arfd€ €lements of can then be computed recursively frémto &, .

show why it is helpful for the generator matrid (A) to be specified
as a lower triangular matrix.

Given ) in a near-ellipsoidal Voronoi cod€ specified inA by m
anda, we can interprek as a codevector generated by decoding using

» Equation (15) give&,, = j,, +mnl,. Therefore,

kn=jn(mod my)

an indexk. Using steps 1 and 4 of the decoding algorithm, we can state  which satisfied < k, <m,,.

that there exists an inddxandz € A such that

A = kM(A) — mult(m, 2). (11)

Sincez € A, there exists als@ such that: = IM(A). Then (11)
becomes

A=EM(A) — IM(A)diag (ma, ..., my). (12)
Consequently, the intermediate indgx= AM(A)™! in step 1 of the
encoding can be expanded as

j=k-1Q (13)

where
Q = M(A)diag (mq, ...

, m,,,)M(A)_l. (14)

To retrieve automatically the exact indéXrom A, we need to elimi-
nate somehow the extra terd®. This is done in steps 2 and 3 of the

3See step 4 of the decoding algorithm: the termlt (m, z) must be inA
for X to also be inA.

» Equation (15) also givels, = (k,, — j.)/m.,. From the already
calculatedk,,, we obtain

ln = (ju(mod my) — jn)/mn = = jn/ma].
» Equation (15) gives
kn—1 = jn-1+ Mu—1lu—1 + an woiln
which can be rearranged as
Bt = Jry + Ma—1lno

wherej,_y = j.—1 + an,»—1l, can be evaluated from the
already calculated,. Therefore,

kn_1 = j;,l(mod My—1)

which satisfied) < k,—1 < m,—_1.
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This recursive procedure eventually results in the following 3) Conditional Modification fo2D;f: For2D,
equations: )
ln = =Ljn/m2] m
mi; — mso
i1 = —=[(Jn-1+ @n n—1ln)/mn_1] — ma
(16)
Q= .
Ul = —|(J2 + (3,23 4+ - + a2l ) /ma | % Mn_1
and
].;7 = . Mz —Mp  Mp—1 — My m
- ST L < 2 2 1 i
j;z—l :jn,1 +ar1,nflln (20)
(17)  wheres = (my —mas —+++—m,—1 — (n —3)m,,)/4 and the missing
¥ . elements inQ) are zeros . The conditional modification can be imple-
Jo=J2 4 (as2ls + -+ + an,2l) mented as follows:
Ji=g1+ (a1l + -+ an 1ln).
The elements of are given by i. Computel, = — |j /mn|
k; = ji(modm;), forl <i<n. (18)

Setj,, = jn

The conditional modification step of Fig. 2 consists of (16) and (17).

Note thatj" is defined here ag, = j, and

Ji=di i g+ o, for1 <i<n.

The quantity; is not calculated in (16), because itis not needed in (17)

and (18). If;’ was defined ag,, = j. + m,l, and
Ji=gi 4wl aig i+ i, fori<i<n
i.e.,j’ = j+10Q, the quantity
= -1+ (az1le+ o+ an 1 ln) /ma ]
would have to be computed, but the indexalculated in (18) would
be identical.

E. Examples of Conditional Modification

We present here several examples to illustrate the conditional modi!

fication, i.e., (16) and (17), fak = Az, Dy, (n > 2) and2D; (n even
> 4). Another example—for the lattick;s—can be found in [16]. For
the conditional modification to work correctly, we assume thatatis-

fies the constraint such that the matéxdefined in (14) and specified

in (8) is a matrix of integers.
1) Conditional Modification ford,: For A2, the matrix@ is com-
puted in (9). The conditional modification is then given by

i. Computels = —|j2/ma2]
ii. Setj; =ji+ (m1—m2)l>/2andjy = jo

2) Conditional Modification foiD,,: ForD,,,the matrixQ is given
by

miy
mi — mso
— = ma
2
(19)

mp — My

2

My

where the missing elements @ are zeros. We obtain the following

sequence of operations for the conditional modification:

i. Computel; = —|j;/m;] fori € {2,..., n}

i Setji = ji+ Y (m1—mi)li/2
=2

Setji = jifori € {2, ..., n}

i. Forie{2,....,n—1}:

wln)/,mJ
2

—setji = ji + (m; — my)l, /2

—computel; = — Kji +

n—1

ii. Setj;=j + Z (m1 —m;)li/2+ sl,
=2

IV. CONCLUSION

In this correspondence, we introduced a special case of Voronoi
coding where a near-ellipsoidal Voronoi code is defined in a lattice
by a modulo vectorn and an offset:.. We showed how standard
Voronoi indexing could be generalized to encode the related codes
using the algorithms of Fig. 2. The main contribution of this cor-
respondence concerns the definition of constraintsnorand the
derivation of a conditional modification step, which is summarized in
(16) and (17). The matrig), given in (14) and (8), was shown to play
a key role in determining the admissible moduloand the design of
the conditional modification step. Note that this step is not required
when the modulo vectorn has identical components, i.e., in the case
of near-spherical Voronoi coding.

The proposed codes have several advantages. They generalize the
standard Voronoi codes of [1]. Their indexing algorithms require min-
imal data storage (only the generator matrix\gthe offsetz, and the
modulo vectonn). Furthermore, the complexity of these algorithms is
essentially given by the complexity involved in the closest lattice point
search and in the conditional modification.

Nonetheless, these codes also have some limitations. The constraints
on admissible scalings are lattice specific; therefore, the optimization
of m for a given Gaussian vector source depend4 diesides, for the
code shape to be really near-ellipsoidal, the shape of a Voronoi region
V' (A) of A should be as spherical as possibleonsequently, the lattice
Z would not be useful. Last but not least, the nearest neighbor search
in Voronoi codes is tricky and is usually solved at low complexity with
suboptimal strategies.

Note that we did not consider here how to optimize the ofidetfix
ties—this problem was already addressed in [1], [2]. An application to
wide-band speech coding can be found in [6] where the latfites
2D}, andA s were used.

4This requirement is also true for the near-spherical Voronoi codes of [1], [2].
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The lattices used herein are full rank, therefore, the following gen{12]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003

APPENDIX
GENERATORMATRICES FOR THELATTICES USED HEREIN

erator matrices are square matrices:

(14]

Forn > 2

(15]

Forn even> 4

1 0
M(As) = [1 \/g} (21)
2 2
2
1
M(D,) = (22)
1 1
4
2 2
M@Dfy = |: (23)
2
11 -+~ 11

The missing coefficients i/ (D,,) and M (2D;") correspond to
Zeros.
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