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n ! 1.) Naturally, we definejKj= 2

( )
as the density ofK. Now

we can define��os(R) as the counterpart of��(R).
The authors of [2] proved (in a somewhat different formulation) that

for all fixed R there is a constantc(R) such that��os(R) � c(R).
The constantc(R) was not computed explicitly, but a careful reading
reveals that it should be at leastaR for some constanta > 1. Repeating
the proof of Theorem 1.2 for one-sided codes (a minor modification is
needed) we can prove the statement of Theorem 1.2 for��os(R) and
(consequently) improve the bound on��os(R) to orderR logR.

Theorem 4.1:Given a pair of positive integersR > R1 � 1

��os(R) �
yR ( y

y�1
)R�R R

R

�1

x��os(R1)

1� e�xyR

holds for any pair of positive constantsx andy satisfyingy > 1 and
1 � e�xyR > 0.

Then we have the following.

Corollary 4.2: For allR � 3

��os(R) � e(R logR+ logR+ log logR+ 1)��os(1):

Notice that here we do not know whether��os(1) = 1.

The minor modification we need in the proof of Theorem 4.1 is due
to the fact that the one-side balls have different volumes. It is not hard,
however, to overcome this obstacle. By the binomial distribution, the
fraction of vertices of n

2 with weights more thann
2
+ 10R

p
n logn

or less thann
2
� 10R

p
n logn is o(1=nR) (10 can be replaced by a

smaller number), so it suffices to focus on the vertices with weights
betweenn

2
� 10R

p
n logn and n

2
+ 10R

p
n logn. The one-sided

balls centered at these vertices all have volume approximatelyn=2
R

.
We leave out the details which might serve as an exercise.
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Near-Ellipsoidal Voronoi Coding
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Abstract—In this correspondence, we consider a special case of Voronoi
coding, where a lattice� in is shaped (or truncated) using a lattice
� = ( . . . ) ( . . . ) � for a fixed =
( . . . ) ( 0 1 ) . Using this technique, the shaping
boundary is near-ellipsoidal. It is shown that the resulting codes can be
indexed by standard Voronoi indexing algorithms plus a conditional mod-
ification step, as far as� is a sublattice of�. We derive the underlying
conditions on and present generic near-ellipsoidal Voronoi indexing al-
gorithms. Examples of constraints on and conditional modification are
provided for the lattices , ( 2) and 2 ( even 4).

Index Terms—Lattice, lattice codes, lattice indexing, Voronoi coding.

I. INTRODUCTION

We address the problem of designing (near-)ellipsoidal lattice codes
with fast indexing algorithms. The motivation for this work lies in
wide-band speech coding. More specifically, we are interested in de-
signing low-complexity high-dimensional algebraic spectrum coding
based on a Gaussian mixture model [6], which implies construction of
codes to quantize correlated Gaussian vector sources.

Lattices, which are extensively studied in [10], are linear discrete sets
of points. Without loss of generality, we will consider here only lattices
defined in n. A lattice code is defined by selecting a finite subset
of a lattice. Lattice codes find important applications, such as coded
modulation and vector quantization. They are known to yield potential
good performance–complexity tradeoffs and to be asymptotically good
in certain conditions.

Given a lattice, two important steps are required to implement a lat-
tice code.

1) Shape the lattice properly (i.e., define the support region of the
lattice code) and design the indexing algorithms to label code-
vectors.

2) Design a procedure to find the closest lattice pointwithin the
code, that is, the nearest codevector to any arbitrary point.

In this correspondence we deal only with the lattice shaping and in-
dexing problem. This problem is important, since an optimized lattice
shaping may bring significant performance gains compared to a base-
line shaping (e.g., scalar quantization in source coding applications)
[2], [13]. To be more specific, we will focus hereafter on lattice codes
defined by ellipsoidal truncation. As mentioned earlier, this restriction
is motivated by the need in certain applications to quantize correlated
Gaussian vector sources. Other shaping techniques, yielding, for in-
stance, codes definedonor insidespherical [11], [12] or pyramidal [7],
[14], [15] shapes, are not considered.
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Fig. 1. Example of Voronoi codes for� = . (a) Voronoi code = 2. (b) Near-ellipsoidal Voronoi code = (12 4).

Ellipsoidal lattice codes have been already proposed in the literature
[4], [7]–[9]. However, the lattice used in [7] provides no granular
gain. The technique of [8], [9], which generalizes spherical shaping by
enumerating lattice points on ellipsoidal shells, has a complexity in-
creasing exponentially with the lattice dimension and the bit rate of the
code. To avoid these limitations, we present a special case of Voronoi
coding [1], [2] which yieldsnear-ellipsoidal lattice codes with fast in-
dexing algorithms and minimal storage. Some early versions of the al-
gorithms presented hereafter were introduced in [4], [5].

The correspondence is organized as follows. We proceed with the no-
tations and basic definitions, and review Voronoi coding in Section II.
Near-ellipsoidal Voronoi codes are defined and studied in Section III.
As we shall see later, the lattice shaping introduced here is constrained
and the related indexing algorithms comprise a step, calledcondition
modification, which may be tailored for each lattice. We will use, in
particular, the latticesA2,Dn (n � 2) and2D+

n
(n even� 4) for the

purpose of illustrating the related constraints and conditional modifi-
cation. The conclusions come in Section IV.

II. PRELIMINARIES

A. Notations and Basic Definitions

The notation n f0; 1g refers to the set of integers greater than1.
The scalar operatorsb�c andd�e round any input in to the nearest

integer in toward�1 and+1, respectively.
Vectors are denoted with a bar in subscript, while scalars are denoted

in italics. The row convention is used for vectors. Forx in n, theith
element ofx is denotedxi so thatx = (x1; . . . ; xn).

To describe later Voronoi indexing algorithms, we need to intro-
duce the vector operatorsmod,mult, anddiv, which denote the ele-
ment-wise modulo, multiplication, and division of two vector operands,
respectively. Forx andy in n, j in n andm in ( n f0; 1g)n, we
have

mod(j; m) = (j1(mod m1); . . . ; jn(mod mn)) (1)

mult(x; y) = (x1y1; . . . ; xnyn) (2)

div(x; y) = (x1=y1; . . . ; xn=yn) (3)

wheremod is the scalar modulo operator.
In this work, we will consider only full-rank lattices inn. In the

general case, a lattice inn is denoted� and is defined as

� = fk1v1 + � � �+ knvnjk 2
ng (4)

wherefv
i
g
1�i�n is a set of linearly independent vectors inn. These

vectors, when stacked on top of each other, form a matrix, called a gen-
erator matrixM(�) of �. It is important to note that we use the row

convention forM(�). In other words, ifk is in n, x = kM(�) gen-
erates a point in� andxM(�)�1 retrieves the related basis expansion
k. The lattice can then be written as

� = fkM(�)jk 2 ng : (5)

In a lattice, all Voronoi regions are congruent [10], and we can con-
sider only the region related to the origin, denotedV (�).

We will use, more specifically, for� the latticesA2,Dn, and2D+
n .

These lattices are all defined and specified by a generator matrix in
[10]. However, for the sake of completeness and clarity, the generator
matrices used herein are all defined in the Appendix. Note that we use
only lower triangular generator matrices, which will be an important
property to simplify later the near-ellipsoidal Voronoi indexing algo-
rithms.

Following [3], if �0 is a sublattice of�, j�=�0j refers to the order of
the lattice partition�=�0.

B. Voronoi Coding

Given a lattice� in n, a Voronoi code [1] can be defined asC =

� \ 2R V (�) + a , whereR is an integer greater than1 anda is
an appropriate offset in n set to fix ties (i.e., to ensure no point of
� is on the boundary of the shaping region). The code size ofC is
j�=2R�j = 2nR. This definition differs slightly from the original. In
[1], the Voronoi codeC is translated by�a and is usually zero mean;
this difference has, however, no influence on the Voronoi indexing al-
gorithms. The extension of Voronoi coding to lattice shaping by geo-
metrically similar sublattices [2] is not considered here.

With this definition, a Voronoi code can be viewed directly as the
truncation of� by the Voronoi regionV (�) scaled by2R and translated
bya, as illustrated in Fig. 1(a). It is also possible to interpret the shaping
region asV (2R�)+ a, where2R� appears to be a shaping lattice [2].
The advantage of this point of view is thatC can then be viewed as
the set of (minimum-norm) coset leaders of the partition�=2R� [2].
Voronoi shaping may also be interpreted as a modulo operation with
lattice operands [10].

Voronoi shaping yields index-optimized lattice codes since there
exist some elegant indexing algorithms forC which rely on lattice
decoding and modular arithmetics [1].

III. N EAR-ELLIPSOIDAL VORONOI CODES

A. Definition (With Restrictions onm)

Given a lattice� in n, a near-ellipsoidal Voronoi code is defined
asC = � \ (V (�0) + a), where

�0 = f(m1x1; . . . ; mnxn)jx 2 �g : (6)
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The vectorm in ( n f0; 1g)n is constrained here so that�0 is a sub-
lattice of�. The offseta in n is chosen to fix ties. The regionV (�0),
which is the Voronoi region of�0, corresponds to the regionV (�)

scaled in each dimension according to the elements ofm. This lattice
shaping is illustrated in Fig. 1(b).

Property: The size ofC is n

i=1
mi.

Proof: The proof follows directly from [2]. If�0 is a sublattice
of �, the size ofC is j�=�0j. It is easy to verify from the definition of
�0 that

� = �0 + kM(�): (7)

Therefore there are n

i=1
mi cosets of�0 in �, i.e.,

j�=�0j =

n

i=1

mi:

B. Admissible Voronoi Modulos

We address here the problem of finding allm in ( n f0; 1g)n so
that the lattice�0, defined in (6), is a sublattice of�. The solution we
propose is based on the following theorem.

Theorem: �0 is a sublattice of� if and only if

Q =M(�)diag (m1; . . . ; mn)M(�)�1

is a matrix of integers.
Proof: The proof is simple. We assume first that�0 is a sublattice

of �. We start by observing that the rows ofM(�) are in�, and the
rows ofM(�)diag (m1; . . . ; mn) are in�0. Since�0 is a sublattice
of�, the rows ofM(�)diag (m1; . . . ; mn) are also in�. Each row of
M(�)diag (m1; . . . ; mn) multiplied byM(�)�1 will thus give the
expansion in a basis of� in terms of integer coordinates. Consequently,
Q = M(�)diag (m1; . . . ; mn)M(�)�1 is a matrix of integers.

To prove the converse part, we now assume thatQ is a matrix of inte-
gers. A point�0 in �0 may be expanded as�0 = kM(�0). This can be
also written as�0 = kM(�)diag (m1; . . . ; mn) from the definition
of �0. Using the assumption,�0M(�)�1 will be a vector of integers,
which implies that�0 is obtained by an integral combination of a basis
of �. Thus,�0 is a sublattice of�.

By using the above theorem, we can derive the conditions onm for
�0 to be a sublattice of�. Note that the criterion is invariant with respect
to any scaled integer orthogonal transformation of�: if M(�) is a
generator matrix of�, any matrix of the formcTM(�) specifying
the latticec�, wherec is a scaling factor andT an integer orthogonal
matrix (detT = �1), yields identical constraints onm. However, in
general,1 two generator matricesM(�1)andM(�2) of two equivalent
lattices�1 and�2 yield different conditions onm.

Corollary: The admissiblem are points from( n f0; 1g)n \ A,
whereA is an integer lattice which is a function of�.

Proof: We denote byA the set of vectorsm in n such that

Q =M(�)diag (m1; . . . ; mn)M(�)�1

1For instance, the constraints on differ for the two equivalent lattices
� = and� = .

TABLE I
ADMISSIBLE VORONOI MODULOS (BY DEFINITION IS ALSO

CONSTRAINED TOBE IN ( 0 1 )

is an integer matrix. Without loss of generality, we forceM(�) to be
lower triangular. Then it is easy to show thatQ is lower triangular and
has diagonal elementsm1; . . . ; mn, i.e.,

Q =

m1

�2; 1 m2

...
. . .

. . .

�n; 1 � � � �n;n�1 mn

: (8)

It then follows that ifm 2 A, m is an integer vector. Moreover, it is
easy to check that the setA is nonempty and has an additive group
structure. We can then conclude that the setA is an integer lattice, i.e.,
a sublattice of n. The proof is complete by noting that admissible
vectorsm are defined in( n f0; 1g)n \ A.

C. Examples of Constraints onm

For the latticeA2, the condition becomes

Q = M(A2)
m1 0

0 m2

M(A2)
�1 =

m1 0

m1 �m2

2
m2

(9)

whereM(A2) is set as in the Appendix. We obtain thatm1 andm2

must have the same parity (either even or odd). Using the generator
matricesM(Dn) andM(2D+

n ) defined in the Appendix, we obtain
for Dn thatm1, m2, � � �, mn must have the same parity; the same
constraint applies for2D+

n , butm1+ � � �+mn must also be a multiple
of 4. These results are summarized in Table I.

D. Indexing Algorithms: Generic Framework

Voronoi coding, as introduced in [1], is an elegant lattice shaping
technique yielding generic indexing algorithms. It is desirable for near-
ellipsoidal Voronoi codes to keep this attribute, and to minimize algo-
rithmic changes to the original framework of [1]. We will show here
that, as long asm is an admissible Voronoi modulo, a near-ellipsoidal
Voronoi codeC specified in a lattice� by m anda can be indexed
using the algorithms presented in Fig. 2. Note that the indexk in Fig. 2
is not scalar,2 but rather a vector of integers which satisfy0 � ki < mi

for i 2 f1; . . . ; ng. Consequently, there aren

i=1
mi possible values

for k.

2To form a scalar index , the elements of a near-ellipsoidal Voronoi index
can be easily multiplexed (e.g., = + +

+ + ). The size of is log bits.
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Fig. 2. Indexing algorithms for a near-ellipsoidal Voronoi code.

1) Decoding Algorithm: We will begin with the decoding algo-
rithm of Fig. 2 which maps an indexk into a code vector�. This
algorithm is a straightforward generalization of [1]. The detailed steps
1–4 are summarized below as follows:

� = x�Q� (x� a) (10)

whereQ� denotes the nearest neighbor search operation in the lat-
tice �0 andx = kM(�). It follows from (10) that all� generated
by decoding will be in the near-ellipsoidal Voronoi codeC. It is now
important to verify that two different indexesk andk0 will generate
two different code vectors inC. This follows directly from the fact that
(10) may be interpreted as a lattice-modulo operation applied on�. To
conclude this part, it can be verified3 that for the decoding to produce
points in�, �0 has to be a sublattice of�.

2) Encoding Algorithm: Conversely, the encoding algorithm of
Fig. 2 maps a near-ellipsoidal Voronoi codevector� into an indexk.
We describe here the principle of the conditional modification step and
show why it is helpful for the generator matrixM(�) to be specified
as a lower triangular matrix.

Given� in a near-ellipsoidal Voronoi codeC specified in� by m
anda, we can interpret� as a codevector generated by decoding using
an indexk. Using steps 1 and 4 of the decoding algorithm, we can state
that there exists an indexk andz 2 � such that

� = kM(�)�mult(m; z): (11)

Sincez 2 �, there exists alsol such thatz = lM(�). Then (11)
becomes

� = kM(�)� lM(�)diag (m1; . . . ; mn): (12)

Consequently, the intermediate indexj = �M(�)�1 in step 1 of the
encoding can be expanded as

j = k � lQ (13)

where

Q =M(�)diag (m1; . . . ; mn)M(�)�1: (14)

To retrieve automatically the exact indexk from �, we need to elimi-
nate somehow the extra termlQ. This is done in steps 2 and 3 of the

3See step 4 of the decoding algorithm: the termmult( ) must be in�
for to also be in�.

encoding algorithm by applying a conditional modification and an el-
ement-wise modulo. The principle of the conditional modification is
explained next.

If M(�) is specified as a lower triangular matrix, the matrixQ is
lower triangular and has diagonal elementsm1; . . . ; mn, as described
in (8). Moreover, ifm is constrained such that�0 is a sublattice of�,
Q has integer elements. Using (8), we can write (13) as a system of
equations

j1 = k1 � (m1l1 + �2; 1l2 + � � �+ �n; 1ln)

j2 = k2 � (m2l2 + �3; 2l3 + � � �+ �n; 2ln)

...

jn�1 = kn�1 � (mn�1ln�1+ �n; n�1ln)

jn = kn �mnln:

(15)

The elements ofk can then be computed recursively fromkn to k1.

• Equation (15) giveskn= jn+mnln. Therefore,

kn=jn(modmn)

which satisfies0� kn<mn.

• Equation (15) also givesln = (kn � jn)=mn. From the already
calculatedkn, we obtain

ln = (jn(mod mn)� jn)=mn = �bjn=mnc:

• Equation (15) gives

kn�1 = jn�1 +mn�1ln�1 + �n;n�1ln

which can be rearranged as

kn�1 = j0n�1 +mn�1ln�1

wherej0n�1 = jn�1 + �n; n�1ln can be evaluated from the
already calculatedln. Therefore,

kn�1 = j0n�1(modmn�1)

which satisfies0 � kn�1 < mn�1.

...
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This recursive procedure eventually results in the following
equations:

ln = �bjn=mnc

ln�1 = �b(jn�1 + �n; n�1ln)=mn�1c

...

l2 = �b(j2 + (�3; 2l3 + � � �+ �n; 2ln)=m2c

(16)

and
j0n = jn

j0n�1 = jn�1 + �n;n�1ln

...

j02 = j2 + (�3; 2l3 + � � �+ �n; 2ln)

j01 = j1 + (�2; 1l2 + � � �+ �n; 1ln):

(17)

The elements ofk are given by

ki = j0i(modmi); for 1 � i � n: (18)

The conditional modification step of Fig. 2 consists of (16) and (17).
Note thatj0 is defined here asj0n = jn and

j0i = ji + �i+1; ili+1 + � � �+ �n; iln; for 1 � i < n:

The quantityl1 is not calculated in (16), because it is not needed in (17)
and (18). Ifj0 was defined asj0n = jn +mnln and

j0i = ji +mili + �i+1; ili+1 + � � �+ �n; iln; for 1 � i < n

i.e., j0 = j + lQ, the quantity

l1 = �b(j1 + (�2; 1l2 + � � �+ �n; 1ln)=m1c

would have to be computed, but the indexk calculated in (18) would
be identical.

E. Examples of Conditional Modification

We present here several examples to illustrate the conditional modi-
fication, i.e., (16) and (17), for� = A2,Dn (n � 2) and2D+

n (n even
� 4). Another example—for the lattice�16—can be found in [16]. For
the conditional modification to work correctly, we assume thatm satis-
fies the constraint such that the matrixQ defined in (14) and specified
in (8) is a matrix of integers.

1) Conditional Modification forA2: ForA2, the matrixQ is com-
puted in (9). The conditional modification is then given by

i. Computel2 = �bj2=m2c

ii. Setj01 = j1 + (m1 �m2)l2=2 andj02 = j2

2) Conditional Modification forDn: ForDn, the matrixQ is given
by

Q =

m1

m1 �m2

2
m2

...
. . .

m1 �mn

2
mn

(19)

where the missing elements inQ are zeros. We obtain the following
sequence of operations for the conditional modification:

i. Computeli = �bji=mic for i 2 f2; . . . ; ng

ii. Setj01 = j1 +

n

i=2

(m1 �mi)li=2

Setj0i = ji for i 2 f2; . . . ; ng

3) Conditional Modification for2D+
n : For2D+

n

Q=

m1

m1 �m2

2
m2

...
. . .

m1 �mn�1

2
mn�1

s
m2 �mn

2
� � �

mn�1 �mn

2
mn

(20)

wheres = (m1�m2�� � ��mn�1� (n�3)mn)=4 and the missing
elements inQ are zeros . The conditional modification can be imple-
mented as follows:

i. Computeln = �bjn=mnc

Setj0n = jn

ii. For i 2 f2; . . . ; n� 1g :

—computeli = � ji +
mi �mn

2
ln mi

—setj0i = ji + (mi �mn)ln=2

iii. Set j01 = j1 +

n�1

i=2

(m1 �mi)li=2+ sln

IV. CONCLUSION

In this correspondence, we introduced a special case of Voronoi
coding where a near-ellipsoidal Voronoi code is defined in a lattice
� by a modulo vectorm and an offseta. We showed how standard
Voronoi indexing could be generalized to encode the related codes
using the algorithms of Fig. 2. The main contribution of this cor-
respondence concerns the definition of constraints onm and the
derivation of a conditional modification step, which is summarized in
(16) and (17). The matrixQ, given in (14) and (8), was shown to play
a key role in determining the admissible modulom and the design of
the conditional modification step. Note that this step is not required
when the modulo vectorm has identical components, i.e., in the case
of near-spherical Voronoi coding.

The proposed codes have several advantages. They generalize the
standard Voronoi codes of [1]. Their indexing algorithms require min-
imal data storage (only the generator matrix of�, the offseta, and the
modulo vectorm). Furthermore, the complexity of these algorithms is
essentially given by the complexity involved in the closest lattice point
search and in the conditional modification.

Nonetheless, these codes also have some limitations. The constraints
on admissible scalings are lattice specific; therefore, the optimization
ofm for a given Gaussian vector source depends on�. Besides, for the
code shape to be really near-ellipsoidal, the shape of a Voronoi region
V (�)of� should be as spherical as possible.4 Consequently, the lattice

would not be useful. Last but not least, the nearest neighbor search
in Voronoi codes is tricky and is usually solved at low complexity with
suboptimal strategies.

Note that we did not consider here how to optimize the offseta to fix
ties—this problem was already addressed in [1], [2]. An application to
wide-band speech coding can be found in [6] where the latticesD16,
2D+

16, and�16 were used.

4This requirement is also true for the near-spherical Voronoi codes of [1], [2].
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APPENDIX

GENERATORMATRICES FOR THELATTICES USED HEREIN

The lattices used herein are full rank, therefore, the following gen-
erator matrices are square matrices:

M(A2) =
1 0

1

2

p
3

2

: (21)

For n � 2

M(Dn) =

2

1 1
...

. . .

1 1

: (22)

For n even� 4

M(2D+

n
) =

4

2 2
...

. . .

2 2

1 1 � � � 1 1

: (23)

The missing coefficients inM(Dn) andM(2D+
n
) correspond to

zeros.
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