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Hexacode-Based Quantization of the Gaussian Source at1=2 Bit Per Sample
Stéphane Ragot, Jean-Pierre Adoul, and Roch Lefebvre

Abstract—We present the performance of several suboptimal al-
gebraic quantizers in 24 dimensions. The Gaussian source is en-
coded at1 2 bit per sample using the binary extended Golay code
24 and the hexacode 6. We also propose two new suboptimal

decoding algorithms for the hexacode 6.

Index Terms—Golay code, hexacode, vector quantization.

I. INTRODUCTION

T HE objective of this letter is to compare nearest-neighbor
and suboptimal algebraic quantizers in terms of perfor-

mance/complexity tradeoff.
We study the discrete-time memoryless Gaussian source, be-

cause it can characterize well several whitened signals such as
prediction or quantization residues. It is also a major yardstick
in quantization theory and the rate-distortion bound is known
explicitly [1]. Since in high dimensions Gaussian source vec-
tors are essentially located on a thin spherical shell, we con-
sider only a spherical codebook. We study the case of the ex-
tended binary Golay code mapped on the unit Euclidean
sphere by the operation, and by normalizing
the resulting points by [2]. This code describes a source
vector in 24 dimensions with 12 b. The nearest-neighbor search
in such a codebook can be made fast, because the search be-
comes equivalent to dot product maximization. The number of
additions and comparisons is minimized by exploiting the un-
derlying code structure—typically by a trellis search [2].

The hexacode is used to carry out the investigation. It has
been shown recently that it captures in a few codewords the
essence of the Golay code [3], [4] and the Leech lattice
[5]. Indeed, these two exceptional structures can be reduced to

usingad hocprojections exhibited in [3], [4], and [5]. The
hexacode is used herein to cut efficiently the complexity of the
nearest-neighbor search while retaining much of the quantiza-
tion performance of the Golay code.

The paper is organized as follows. Section II describes briefly
the decoding of the hexacode and presents two new subop-
timal algorithms. Section III reviews briefly how to decode effi-
ciently the Golay code using and presents numerical results,
before concluding.

II. HEXA-DECODING

The hexacode is defined as the linear quaternary code (6,
3, 4) specified, for instance, by the generator matrix [3]
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Its symbols , with , are the elements of the
Galois field GF(4). The addition and multiplication over GF(4)
extend their binary analogs [4], [6] and can be derived from the
primitive polynomial of GF(4).

In what follows, the term hexa-decoding refers to as the de-
coding of the hexacode. The hexa-decoding problem can be for-
mulated as follows [4]. Given the confidence values for
the quaternary symbols and ,
find the codeword which maximizes the metric .
That is, find

(1)

where the metric is defined as

(2)

and denotes theth element of .
Optimal hexa-decoding algorithms have been proposed in [4],

[7], and [8]. The winner can be found efficiently using a trellis,
and this technique requires as few as 179 operations per source
vector (116 additions, 63 comparisons) with a 4-section trellis
as described in [7]. This complexity may be still too high for
implementation. Therefore, several bounded-distance hexa-de-
coding algorithms have been proposed in [9] and [10]. They are
all based on the same preselection step: a hard decision.

We propose here a new class of suboptimal hexa-decoding
algorithms. They rely on the following property of the hexacode:
if an arbitrary point , with GF(4) for

, is not in the hexacode , there are 11 hexa-
codewords at Hamming distance from . The algorithm is
detailed according to [11] the following.

1) Compute the codewordwhose components are defined
as

for (3)

If the hard-decoded point is a hexa-codeword, then se-
lect it as the winner , and stop.

2) Otherwise, identify the 11 hexa-codewords at Hamming
distance , that is, sharing at least 3 symbols with,
calculate their metrics, and select a hexa-codeword of op-
timal metric.

This algorithm requires 83 operations at most. Complexity can
be reduced further down to at most 35 operations by examining
the hexa-codewords at Hamming distanceonly. These two
versions of the algorithm are referred hereafter to as depth-first
search 1 and 2, respectively.
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TABLE I
QUANTIZATION PERFORMANCE OF THEGOLAY CODE

III. PERFORMANCE ANDCOMPLEXITY OF GOLAY CODE

QUANTIZATION

The relationship between the Golay code and the hexacode is
described in [3] and [4] using a binary 46 array known as the
Miracle Octad Generator (MOG). In short, the Golay code can
be defined as the code whose projection from the MOG is the
hexacode and which verifies two parity constraints. These con-
straints are referred to as global parity and top-row parity with
respect to the MOG array [4]. This point of view is equivalent
to a multilevel construction [7] and yields the generator matrix
found at the bottom of the page. Decoding the Golay code then
amounts to parsing a trellis of the hexacode once for each global
parity and checking for the top-row parity in every path [4]. Very
efficient decoding algorithms for the Golay code can be derived
by relaxing some constaints in the optimal decoding. For in-
stance, the top-row parity could be checked only after complete
parsing of the trellis [7]. Moreover a suboptimal hexa-decoding
algorithm could be used instead of trellis decoding [9], [10].

A Monte Carlo simulation was used to estimate the mean-
squared error (MSE) for the decoding algorithms of the Golay
code described in this paper. The gain-shape reconstructionof
the Gaussian i.i.d process is given at bit per sample
by where is a constant and . The optimal per-
formance is bounded by the Shannon limit dB
in terms of signal-to-noise ratio (SNR), and the gainis opti-
mizeda posteriorias in [12]. Note that in [12] approximately

10 000 Gaussian vectors were used to evaluate the performance
of optimal Golay quantization. We generated a sequence of 100
000 Gaussian vectors with the Box–Muller method [13] for this
paper. Table I shows the results for different decoding algo-
rithms of the Golay code. Complexity is measured as the number
of floating-point operations (additions and comparisons). The
suboptimal algorithms perform favorably.

IV. CONCLUSION

Algebraic codes yield efficient quantization techniques,
which require virtually no storage and few floating-point
operations compared to unstructured vector quantizers. How-
ever, the complexity of the optimal nearest-neighbor search in
algebraic codebooks explodes very quickly with the codebook
dimension. This paper presented some numerical results that
motivate the further development and performance analysis of
very high-dimensional quantization codebooks with suboptimal
algebraic techniques.

Furthermore, the decoding of the hexacode can be used not
only for Golay quantization but also for the Leech lattice de-
coding problem [5], [7], [9], [10]. It would be interesting to
apply the two suboptimal hexa-decoding algorithms described
in this paper to the Leech lattice.
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