
STOCHASTIC-ALGEBRAIC WIDEBAND LSF QUANTIZATION 

Stkphane Ragot, Roch Lefebure, Redwan Salami, and Jean-Pierre Adoul 

Department of Electrical and Computer Engineering 
University of Sherbrooke 
Sherbrooke, Qukbec, Canada J1K 2R1 

ABSTRACT 

This paper describes a fixed-rate quantizer using algebraic 
techniques as well as conventional stored codebooks to re- 
present the wideband line spectral frequencies (LSF). I t  is 
based on two-stage split vector quantization with random 
and lattice codebooks in the first and second stage, respec- 
tively. We investigate the use of variable bit allocation in 
lattice quantization in order to capture outliers and reduce 
the overload distortion in spectral quantization, particu- 
larly for non-speech signals. Experimental results show that 
a variable bit allocation in split quantization yields perfor- 
mances slightly better than a fixed allocation at  the same 
rate. 

1. INTRODUCTION 

Low bit-rate wideband coding is still an open problem. Cur- 
rent systems fail to achieve a good quality for both speech 
and audio signals at 16 kbit/s for a 16 kHz sampling fre- 
quency. One promising research axis consists of adapting 
speech coding techniques, which are essentially based on 
linear prediction, so as to represent speech and audio sig- 
nals in the same framework. Typically the linear prediction 
coefficients are transformed into line spectral frequencies 
prior to quantization [l, 21. In this context one step to- 
ward a joint coding system is to develop a LSF quantizer 
achieving a good quality for both speech and audio signals. 
Perceptually the main challenge is to handle outliers. 

LSF quantization has been studied deeply for telephone- 
bandwidth (or narrowband) speech coding. Many solutions 
have been proposed yielding different trade-offs between 
spectral distortion, bit rate, robustness against random bit 
errors or frame erasures, and delay. Most of these solutions 
use constrained vector quantization (VQ) to cope with im- 
plementation limits, and exploit the source memory. The 
most popular techniques are split VQ, multistage VQ, lat- 
tice VQ, together with predictive VQ or matrix quantiza- 
tion. More specifically, a hybrid quantization scheme was 
presented in [3] for narrowband speech coding based on two- 
stage tree-search VQ-lattice VQ. 

Hybrid structures [4] are attractive in terms of perfor- 
mance vs complexity trade-off for wideband LSF quantiza- 
tion. Based on a particular stochastic-algebraic structure, 
we propose in this paper a novel approach to spectral quan- 
tization by using variable-rate lattice quantization in order 
to handle irregular outcomes and capture outliers. The to- 
tal bit rate is kept constant for the sake of simplicity. 
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The paper is structured as follows. We introduce first 
the stochastic-algebraic structure in Section 2. Lattice quan- 
tization is briefly covered in Section 3. We emphasize the 
design of variable-rate lattice quantization and the use of 
a weighted mean square error in lattice codebook search. 
Experimental results are presented in Section 4, and con- 
clusions in Section 5. 

2. STOCHASTIC-ALGEBRAIC STRUCTURE 

A two-stage quantizer is described in Figure 1. This figure 
introduces also the notation used in the paper. The order 
of linear prediction is 16. 
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Figure 1: Two-stage split stochastic-algebraic quantizer. 
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2.1. Quantization strategies and bit allocation 

We choose to optimize the quantizer for speech signals, so 
we use in training an LSF database extracted from speech 
material. Indeed there is more statistical structure (e.g. 
invariants) in speech than in audio signals. Since the first 
speech formants have bigger variances and are perceptually 
more important, the first stage can be biased by allocating 
more bits to the first split than to the second split. In order 
to reduce storage requirements and search complexity, 7 and 
5-6 bits are typically allocated to the quantizers Q1 and Q2 
of Figure 1. The resolution in the algebraic stage has to be 
high enough (typically 2 bits per sample, near 16 bits per 
split), so that the lattice codebooks can be effective. The 
main point here is that the two algebraic quantizers, AQ1 
and AQ2, share a subset of an unscaled lattice codebook. 

2.1.1. Fixed bit allocation 

The easiest design for the stochastic-algebraic system of 
Figure 1 is to constrain the lattice codebooks in AQ1 and 
AQ2 to produce a fixed rate. In this case, we can apply se- 
quential split quantization in both design and search. Note 
that the ordering of the reconstructed LSF values 

O < GI + AGI < G2 + AG2 < ' .  . < GI6 + AG16 < 7T (I)  

and the gaps between adjacent frequencies must be checked 
to ensure the stability of the synthesis filter and avoid sharp 
resonances in the quantized spectrum. 

2.1.2. Adaptive bit allocation 

Variable-rate lattice quantization can be used in AQ1 and 
AQ2. In this case a side information T I  is produced, and 
the first and second splits are quantized jointly. The pa- 
rameter 7-1 indicates how many bits are allocated to AQ1 
within a certain allowed range. Implicitly AQ2 receives the 
remaining bits in the total fixed-rate budget and its scaling 
is adapted. This approach can be expected to fit real situ- 
ations in a more flexible fashion than the fixed allocation. 

2.2. Codebook training and optimization of scaling 

Some algorithms can be found in [5]  for training a multi- 
stage structure, and in [6] for a stochastic-algebraic struc- 
ture. We use here an iterative sequential algorithm. It con- 
sists of optimizing sequentially each stage until the global 
convergence of quantization distortion. One stage is up- 
dated at a time, while the other is kept static. The two 
stages are optimized differently. In the algebraic stage, 
only a few scaling parameters are tuned approriately, e.g., 
by a steepest descent method based on estimated gradi- 
ents. The random codebooks in each split of the stochastic 
stage are trained with a modified version of the general- 
ized Lloyd-Max algorithm [7] which takes into account the 
second stage. 

Based on the model of Figure 2, the adaptation of each 
codeword &[n] at iteration n is given by 

&[n+ 11 = arg min E [Ilw - (ij + Ai3)112 : w E Vr~[n]] , (2) 
w E R 8  

I 1 

61 
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Figure 2: Two-stage model for training one split (w E R8). 

where Vk[n] is the Voronoi region associated to &[n]: 

= { w  E w8 : Q ( ~ )  = e,[n]). (3) 

For instance the model can be applied to the first split with 

w = [ w1 ... 

Ai; = [ Ai21 ... 

It can be shown that the centroid &[n + 11 is given by 

e&+ 11 = E [ w  - AG : w E V,[n],AG = A Q ( w  - &[n])] .  

A similar derivation is obtained if the squared error 1 1 . 1 1 2  is 
weighted. 

(5) 

2.3. Codebook search 

The M-L search algorithm [5] is chosen for codebook search 
in each split. We extract M survivors in the first stage with 
respect to mean square error (MSE), apply A4 parallel sec- 
ond stage quantization trials, and then select the codewords 
giving the best reconstruction with respect to the weighted 
mean square error (WMSE). The resulting performance is 
sub-optimal, but close to that of full search for reasonable 
values of M .  

The codeword selection in each split relies on an ad 
hoc quadratic measure, which approximates the spectral 
distortion due to the difference between w and wq = G + A G  

&(U, w q )  = (w  - W q ) T  w ( w  - Uq)  

d L ( w , w , )  = C Wi (Awi - A&)'. 

(6) 

The weighting matrix W is a diagonal here, so we obtain 

8 

(7 )  
i=l 

A similar measure is used for the search in the second split. 
Intuitively each weight Wi should measure the spectral sen- 
sitivity of the original value wE.  The choice of weighting is 
usually based on comparative tests between several practi- 
cal measures, although some theoretical results [8] are avail- 
able. 

3. LATTICE QUANTIZATION REVISITED 

Lattice quantization generalizes uniform scalar quantization 
and is efficient for high-resolution sources. A lattice pop- 
ulates the whole space with an infinite array of points [9]. 
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Once scaled, truncated and shifted, it produces a lattice 
codebook. Truncation is also called shaping. This paper 
focuses only on the Gosset lattice 191 

RE8 = 2D8 U {[I 1 1  1 1  1 1  11 + 208} ,  (8) 
where 

3.1. Fixed-rate  latt ice quantization 

Truncating or shaping a lattice is not trivial in a fixed-rate 
lattice codebook design. Ideally the codebook boundaries 
should wrap the stationary signal distribution without too 
many outliers. However, a sophisticated shaping technique 
may have a prohibitive complexity, so the easiest solution is 
often to apply a “hard” shaping which enables fast search 
and indexing (for instance a pyramidal] spherical or Voronoi 
shaping). Spherical shaping is suitable when the distortion 
measure is quadratic, and it allows to employ an elegant 
indexing algorithm based on the concept of absolute and 
signed leaders [lo]. 

3.2. Variable-rat e latt ice quant izat ion 

A “good” lattice yields a low granular quantization distor- 
tion within the shaping boundary, assuming that the reso- 
lution is high enough. In some applications such as trans- 
form coding or spectral quantization, we may break the 
constraint of fixed-rate quantization in order to distibute a 
constant total bit budget over different components. Em- 
bedded algebraic vector quantization (EAVQ) [lo] is a self- 
adaptive quantization technique, and it is well-suited here. 

Table 1: Lattice codebook rates in adaptive strategy. 

A: 4-bit increment B: 2-bit increment 
T I  I rate of AQI [bits] T I  I rate of AQ1 [bits] 

12 14 

Using the embedding principle [lo], we can design RE8 
codebooks having a bit rate multiple of b. The choice of the 
integer bit increment b depends on how finely bits should 
be allocated. Table 1 describes the bit rate of AQ1 in the 
adaptive strategy. For instance in encoding A, AQ1 can 
receive 12, 16 or 20 bits. If the total bit budget for lattice 
quantization is 32 bits, AQ2 receives implicity the rest of 
bits (20, 16 or 12 bits respectively). 

3.3. Lattice quantization for a weighted measure 

A weighted mean square error is used in spectral quan- 
tization to ,approximate perceptual distortion, while lat- 
tice codebook search usually minimizes the Euclidean dis- 
tance. We propose here an algorithm inspired from alge- 
braic bounded-distance decoding which aims at reducing 
this target mismatch. 

Given a positive definite weighting matrix W, an input 
value Ow and a lattice codebook C,  

Find the nearest neighbor ASS of Aw in C with respect 
to the Euclidean distance and compute the weighted 
squared error 

d&(Aw, AZ) = (Aw - ASS))TW(A~ - AZ). (10) 

This procedure is equivalent to a hard decoding or a 
preselection phase. 

Select the winner AG in C with respect to the weighted 
distortion d& inside an Euclidean sphere S centered 
at ASS, i . e .  search around ASS for a better candidate 
AS. 

boundary of , Voronoi region 

Figure 3: An example of suboptimal D2 lattice search : pre- 
selection ASS and corrected point Ai3 for Aw = [2.8, 2.1IT. 
The weighting is W1 = 2 and W2 = 1. 

The bounded search region S is restricted here to  the 
240 points in the first shell of REe, but it can be easily ex- 
tended to several low-energy RE8 shells. These 240 points 
are generated by all permutations of the signed coordinates 
of [2 2 0 0 0 0 0 01 and [l 1 1 1 1 1 1 11. Algebraic properties can 
be used to reduce the additional search complexity. The in- 
dexing is unchanged. 

4. E X P E R I M E N T A L  RESULTS 

The stochastic-algebraic quantizer shown in Figure 1 was 
trained with a database containing 74,000 vectors. The pre- 
dictive coefficients were extracted every 20 ms with frames 
of length 30 ms, a Hamming windowing, a pre-emphasis 
factor of 0.75, a white noise correction factor 1.0001 and 
a 60 Hz bandwith expansion. The inverse harmonic mean 
weighting was used for codeword selection as in [3, 41. 

The performance of spectral quantization is presented 
in terms of spectral distortion [2] 

s D = \ i & r  (10 log,, A ( w ) ~  - 10 log,, A , ( ~ ) ~ ) ~ d w  

(11) 
where A(w) and AP(w) refer to the original and quantized 
linear predictive spectra, w+ and w- correspond to 50 Hz 
and 7000 Hz respectively, and 6w = w+ - w-. I t  provides 
a basis for benchmarking, even if it is a flat measure in the 
frequency domain and does not match the behavior of the 
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human ear. The results are summarized in Table 2 and were 
obtained from a speech test database of 24,000 vectors. M I  
and Mz indicate the number of survivors used in M-L search 
in the first and second split, respectively. Note that a LSF 
reordering forced the stability of all the synthesis filters if 
needeed, therefore no “unstable” filter was discarded in the 
statistics. 

45 
46 
47 

Table 2: Distortion statistics over the 50 Hz-7 kHz band. 

7,6,16,16 1.02 1.37 0.004 
7,6,17,16 0.98 1.13 0 
7,6,18,16 0.95 0.94 0 

Fixed bit allocation ( M I  = 8, M2 = 4) 
Rate 1 1  

[bits] 
. 47 

47 

kl,kz,k3 +k,,& [dB] [%I [%I 
7,6 ,32 ,2  (A) 0.97 0.91 0 
7 , 6 , 3 2 , 2  (B) 0.95 0.62 0 

Adaptive bit allocation ( M I  = 8, Ma = 4) 
>I 

It  was found that a lattice codebook search with respect 
to W M E  brings a negligible improvement (near 0.01-0.02 
dB in SO) over MSE search, even for extended bounded- 
search regions. Therefore their mismatch is not significant. 

0 5  1 1 5  2 2 5  3 35 4 
SD (de) 

Figure 4: Histograms of spectral distortion at 47 bits. 

Figure 4 shows that for speech signals the adaptive al- 
location reduced slightly the amount of outliers. However, 
the potential advantage of variable-rate lattice quantization 
was not fully exploited because of some severe constraints, 
as constant total rate and limited range in bit allocation. 

5. CONCLUSIONS 

focused on speech signals, the use of algebraic codebooks 
made the system versatile. A variable allocation between 
splits improved the quantization performance slightly. It 
would be interesting to extend the algebraic quantizers to 
cover a wider range of bit allocations, or to allow the whole 
quantizer to produce a variable rate. 

For moderate-to-high rates and dimensions, algebraic 
codebooks enable less computations and less storage than 
optimal random codebooks, but they require more program 
lines. They have another advantage which was exploited 
here: scalability. 
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