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ABSTRACT

In this paper we present a model-based method to optimize the dead-
zone of uniform scalar quantization in transform audio coding. The
input signal is coded in modified discrete cosine transform (MDCT)
domain by uniform scalar quantization followed by context-based
arithmetic coding. The optimal deadzone is derived using a non-
asymptotic method, assuming that the distribution of MDCT coeffi-
cients is approximated by a generalized Gaussian model. We show
that deadzone optimization improves slightly quality, especially at
low bitrates.

Index Terms— Transform coding, audio coding.

1. INTRODUCTION

Using a deadzone for scalar quantization is well-known to improve
the performance of audio or image coding. For example a dead-
zone is used in ITU-T G.722.1 Recommendation [1], MPEG audio
standards (where it is related to the so-called ”magic number”) or in
JPEG2000 [2]. The main contribution of this work lies in the ap-
plication of generalized Gaussian model to optimize the deadzone
for scalar quantization. The inclusion of a deadzone for quantization
was studied in [3] for Laplacian distribution. It has shown that under
high rate assumption the optimal deadzone z is close to the stepsize
q. In the case of low bitrate for a Laplacian distribution the optimal
deadzone z is two times the stepsize q [4].

This paper is organized as follows. We present the principle of
deadzone optimization based on generalized Gaussian model in Sec-
tion 2. Then the proposed coder is presented in Section 3. Objective
and subjective quality results are presented in Section 4 before con-
cluding in Section 5.

2. DEAD ZONE OPTIMIZATION BASED ON
GENERALIZED GAUSSIAN MODEL

2.1. Preliminary: generalized Gaussian model

The probability density function (pdf) of a zero-mean generalized
Gaussian random variable x of standard deviation σ is given by [5]:

gσ,α(x) =
A(α)

σ
e−|B(α)x/σ|α , (1)
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where α is a shape parameter describing the exponential rate of de-
cay and the tail of the density function,

A(α) =
αB(α)

2Γ(1/α)
and B(α) =

√
Γ(3/α)

Γ(1/α)
, (2)

with

Γ(α) =

∫ ∞

0

e−ttα+1 dt. (3)

The special cases α = 1 and 2 correspond to the Laplacian and
Gaussian distributions respectively. In order to estimate the shape
parameter α we use a method proposed by Mallat [6].

2.2. Deadzone optimization based on a generalized Gaussian model

We consider the encoding of N zero-mean random variables xi of
variances σ2 with respect to the mean square error criterion. We as-
sume that the variables xi have a generalized Gaussian pdf gσ,α(xi)
of shape parameter α. The variables xi are coded by scalar quanti-
zation with the same step size q. For a given bit allocation R in bits
per sample, the bit allocation problem is to minimize the distortion
D under the constraint that

∑N
i=1 bi ≤ R. Solving this problem

is the minimization of a function with Lagrangian techniques. The
criterion J(z, q, λ) is defined as:

J (z, q, λ) = D
(
α,

z

σ
,

q

σ

)
− λ

(
b
(
α,

z

σ
,

q

σ

)
− R

)
(4)

where λ is the Lagrange multiplier.

The quantization mean square error DQ resulting for the encod-
ing of N random variables xi is given by [7]:

DQ =

∫ z/2

−z/2

x2gσ,α(x)dx +2

+∞∑
m=1

∫ z/2+mq

z/2+(m−1)q

(x − x̂m)2 gσ,α(x)

(5)
where x̂m is the reconstruction level of each quantization level m.
Here, we consider the special case of a reconstruction level set to
mid-value so:

x̂m =
z

2σ
+ (m − 1

2
)
q

σ
(6)

After simplifying we have the following relationship:

DQ = σ2 + 2

+∞∑
m=1

x̂2
m

∫ z/2+mq

−z/2+(m−1)q

gσ,α(x)dx

−4

+∞∑
m=1

x̂m

∫ z/2+mq

−z/2+(m−1)q

xgσ,α(x)dx (7)
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By using Eq. 6 we can write that:

DQ = 2σ
2

+∞∑
m=1

(
z

2σ
+

(
m − 1

2

)
q

σ

)2

f0,m

(
α,

z

σ
,

q

σ

)

−4σ
2

+∞∑
m=1

(
z

2σ
+

(
m − 1

2

)
q

σ

)
f1,m

(
α,

z

σ
,

q

σ

)
+ σ

2

(8)

where fn,m

(
α, z

σ
, q

σ

)
is a function defined as:

fn,m

(
α,

z

σ
,
q

σ

)
=

∫ z/2σ+mq/2σ

z/2σ+(m−1)q/2σ

xng1,α(x)dx (9)

So the mean square error DQ is a function of the stepsize q, the dead-
zone z, the shape parameter α and the variance σ2. The distortion is
defined as [5]:

D
(
α,

z

σ
,
q

σ

)
=

DQ

σ2
(10)

The bit rate is defined as:

b = −
+∞∑

m=−∞
p(m) log2 p(m) (11)

where p(m) is the probability of having the quantization level m.
The generalized Gaussian distribution is symmetrical so we have the
relationship p(m) = p(−m) and finally:

b = p(0) log2 p(0) − 2

+∞∑
m=1

p(m) log2 p(m) (12)

where p(m) is defined as:

p(m) =

∫ z/2+mq/2

z/2+(m−1)q

g1,α(x)dx = f0,m

(
α,

z

σ
,
q

σ

)
(13)

The bit rate is also a function of stepsize q, deadzone z, shape pa-
rameter α and variance σ2. Finally, we have the relationship [5]:

b
(
α,

z

σ
,
q

σ

)
= −f0,0

(
α,

z

σ

)
log2 f0,0

(
α,

z

σ

)

−2

+∞∑
m=1

f0,m

(
α,

z

σ
,
q

σ

)
log2 f0,m

(
α,

z

σ
,
q

σ

)
(14)

It can be shown that the optimal dead zone z is given by the
solution to the equation [5]:

∂D
∂z

(
α, z

σ
, q

σ

)
∂b
∂z

(
α, z

σ
, q

σ

) =

∂D
∂q

(
α, z

σ
, q

σ

)
∂b
∂q

(
α, z

σ
, q

σ

) (15)

From Eq. 15 we have a derivative systems from which it is possi-
ble to extract a relationship between ln (q/σ) and z/q. So for practi-
cal implementation, we stores tables of this relationship for different
values of the shape parameters α.

Fig. 1 presents charts in order to have the optimal deadzone z
depending of the shape parameter α, the stepsize q and the variance
σ. As we can see, as the stepsize is getting smaller, which means for
high bitrate, the deadzone is equal to the stepsize. For lower bitrate,
the size of the deadzone increases. For typical audio and speech
bitrate coding, ln (q/σ) is between 1 and -2 which give a ratio z/q
between 1 and 2.
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Fig. 1. Optimal deadzone for a uniform scalar quantizer with cen-

troid set to mid-value (assuming a generalized Gaussian model).

3. PROPOSED CODING STRUCTURE

3.1. Encoder

The proposed encoder is illustrated in Fig. 2. The input sampling
frequency is 16000 Hz, while the frame length is 20 ms with a looka-
head of 25 ms. The effective bandwidth of the input signal x(n) is
50-7000 Hz. Weighting and transform on x(n) are the same as de-
scribed in [6]. They consist of linear-predictive weighting followed
by modified discrete cosine transform (MDCT) and low-frequency
pre-shaping. The distribution of the spectrum Xpre(k) is approxi-
mated by a generalized Gaussian model and Mallat’s method [8] is
used to estimate the shape parameter α. The deadzone optimization
is based on the pdf of Xpre(k) as described in Section 2. The pre-
shaped spectrum Xpre(k) is divided by stepsize q and the resulting
coefficients Y (k) are encoded by scalar quantization with deadzone:

Ỹ (k) =

⎧⎨
⎩

Xpre(k)/q − (z − q) /2q if Xpre(k) > z/2
Xpre(k)/q + (z − q) /2q if Xpre(k) < −z/2
0 otherwise

(16)
Only the first 280 coefficients of the Y (k) spectrum corresponding
to the 0-7000 Hz band are coded; the last 40 coefficients are dis-
carded. The rate control consist in finding the appropriate step size
q so that the number of bits, nbit, used for stack-run coding matches
the allocated bit budget as described in [6]. Finally, a noise estima-
tion is performed on the spectrum Y (k) after stack-run coding. The
noise floor σ is estimated as in [6]:

σ = r.m.s. {Xpre(k) |Y (k) = 0} (17)

The step size q is scalar quantized in log domain with 7 bits. The
noise floor σ is quantized by coding the ratio σ/q̂ in linear domain
with 3 bits. In the case of stack-run coding with z = zopt, the ratio
z/q is quantized in linear domain with 2 bits. Otherwise for stack-
run coding with z = q or z = 2q we don’t need to transmit the ratio
z/q.
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Fig. 2. Block diagram of the proposed predictive transform coder with deadzone.

3.2. Decoder

The decoder in error-free conditions is illustrated in Figure 2. The

reconstructed spectrum Ŷ (k) is given by:

Ŷ (k) =

⎧⎨
⎩

q̂Ỹ (k) + (ẑ − q̂) /2 if Ỹ (k) > 0

q̂Ỹ (k) − (ẑ − q̂) /2 if Ỹ (k) < 0

0 if Ỹ (k) = 0

(18)

where Ỹ (k) is found by stack-run decoding, ẑ and q̂ are respectively

the decoded deadzone and the decoded stepsize. The spectrum X̂(k)
is de-shaped by using an inverse weighting and transform presented
in [6].

3.3. Bit allocation

The parameters of the proposed coder are line spectrum frequency
(LSF) parameters, step size q, and noise floor level σ. The ratio
z/q is transmitted to the decoder only for scalar quantization with
optimal deadzone. The bit allocation to the parameters is detailed
in Table 1, where Btot is the total number of bits per frame. For
instance at 24 kbit/s, Btot = 480 bits. The allocation (in bits per
sample) to stack-run coding with deadzone scalar quantization is
B = (Btot − 52)/280.

Table 1. Bit allocation for the coding scheme.
Parameter Number of bits

LSF 40

Step size q 7

Noise floor σ 3

Stack-run coding with z = q Btot-50

Stack-run coding with z = 2q Btot-50

Ratio z/q 2

Stack-run coding with z = zopt Btot-52

Total Btot

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this work we used the same experimental setup as in [6]. A
database of 24 clean speech samples in French language (6 male
and female speakers×4 sentence-pairs) and 16 clean music samples
(4 types×4 samples) of 8 seconds is used. These samples are sam-
pled at 16 kHz, preprocessed by the P.341 filter of ITU-T G.191A
and normalized to -26 dBov using the P.56 speech voltmeter.

4.1. Optimization of the dead zone

Fig. 3. Example of dead-zone optimization.

We presented in Fig. 3 an example of the dead-zone optimiza-
tion with a centroid at middle-value for a French female speaker
sample of 8 seconds at two bitrates 16 and 32 kbit/s. As we can
see in Fig. 3 (c) ln(q/σ) at 32 kbit/s is smaller than the one at 16
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kbit/s because the stepsize at high bitrate is smaller than the one at
low bitrate. Also in Fig. 3 (d) the mean value of z/q ≈ 1.6 at 32
kbit/s and the mean value of z/q ≈ 1.8 at 24 kbit/s which confirm
the theory that at high bitrate z/q is getting closer to 1.

4.2. Objective quality results

WB-PESQ [9] is used to evaluate the quality of the proposed coder
and compare it with ITU-T G.722.1. Only clean speech samples are
used to compute the average WB-PESQ scores at various bitrates.
The bit rate varies from 16 to 40 kbit/s with a step of 4 kbit/s for our
coder. ITU-T G722.1 is tested at 24 and 32 kbit/s.

Fig.4 shows the WB-PESQ scores obtained for the two coders
As we can see, using a scalar quantizer with an optimal dead-zone
z = zopt or a dead-zone equal to two times the stepsize z = 2q
improves the performance at low bitrate. It seems that having z =
zopt or z = 2q is equivalent, it could be explain by the fact that we
need two bits to transmit the optimal deadzone zopt which is not the
case if z = 2q or z = q.

Fig. 4. Average WB-PESQ score (centroid set to mid-value).

4.3. Subjective quality results

An informal AB tests at 24 kbit/s has been conducted for speech in
order to compare the stack-run coding with or without deadzone .
In total 9 experts participated in the test. Fig. 5 shows the results.
Stack-run coding with z = zopt was preferred for speech in 50% of
cases. The results confirmed the objective quality results at 24 kbit/s.
Subjective tests have also been conducted at 32 kbit/s for speech and
music and the two coders are equivalent. Consequently, the use of an
optimized deadzone zopt does improve slightly quality, especially at
low bitrates.

4.4. Complexity

The algorithmic complexity of stack-run coding is 45 ms (20 ms for
the frame, 20ms for the MDCT and 5 ms for the lookahead), while
that of G.722.1 is 40 ms. The computational complexity of G.722.1
is low which is not the case with the stack-run coding. Indeed in the

Fig. 5. AB test results for speech at 24 kbit/s.

latter case, a rate control loop is needed [6] and in practice stack-
run coding is performed several times per frame. The memory re-
quirements (in terms of data ROM) for the stack-run coding consists
mainly of the storage of GMM parameters for LPC quantization and
MDCT computation tables. To compute the optimal deadzone zopt

for each MDCT frame we have to store the tables which gives the
relationship between ln(q/σ) and z/q.

5. CONCLUSION

In this paper we proposed a non-asymptotic method to have opti-
mal deadzone for scalar quantization, assuming that the distribution
of MDCT coefficients is approximated by a generalized Gaussian
model. In fact, stack-run coding with z = 2q is near-equivalent to
z = zopt. This result relies on the assumption of generalized Gaus-
sian modeling and the use of ideal entropy coding. Still, we can
consider that z = 2q is a general solution for scalar deadzone opti-
mization and it is not specific to stack-run coding. Finally this result
confirms [3]. However we don’t have a Laplacian distribution and
we don’t assume high bitrate.

REFERENCES

[1] ITU-T G.722.1, Coding at 24 kbit/s and 32 kbit/s for Hand-free
Operations in Systems with Low Frame Loss, 1999.

[2] D. S. Taubman and M. W. Marcellin, JPEG2000: Image
Compression Fundamentals, Standards and Practice, Springer,
2001.

[3] G. J. Sullivan, “Efficient scalar quantization of exponential and
laplacian random variables,” IEEE Trans. on Information The-
ory, vol. 42, no. 5, pp. 1365–1374, sept 1996.

[4] S. G. Mallat, “Analysis of low bit rate image transform cod-
ing,” IEEE Trans. on Signal Proc., vol. 46, pp. 1027–1042, April
1998.

[5] C. Parisot, M. Antonini, and M.Barlaud, “3d scan based wavelet
transform and quality control for video coding,” EURASIP, vol.
1, pp. 521–528, Jan 2003.

[6] M. Oger, S. Ragot, and M. Antonini, “Transform audio coding
with arithmetic-coded scalar quantization and model-based bit
allocation,” Proc. ICASSP, May 2007.

[7] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, 1993.

[8] S. G. Mallat, “A theory for multiresolution signal decompo-
sition: The wavelet representation,” IEEE Trans. Patt. Anal.
Machine Intell., vol. 11, pp. 674–693, Jul 1989.

[9] ITU-T Rec P.862.2, Wideband extension to Recommendation
P.862 for the assessment of wideband telephone networks and
speech codecs, Nov 2005.

4764


