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ABSTRACT
In this paper we present a new model-based coding method to rep-
resent the linear-predictive coding (LPC) parameters of wideband
speech signals (sampled at 16 kHz). The LPC coefficients are
transformed into line spectrum frequencies (LSF) and quantized
by switched AR(1)/MA(1) predictive Karhunen-Loeve transform
(KLT) coding. Compared to previous work, the main novelty lies
in the use of improved quantization to represent the (transformed)
prediction error of LSF parameters. Generalized Gaussian model-
ing is applied for this purpose. We review existing methods to fit the
free model parameter of a generalized Gaussian model to real data
and show that that the distribution of the prediction error for LSF
parameters is indeed very close to Laplacian. Experimental results
show that the proposed LSF quantization method has a performance
close to classical vector quantization (AMR-WB LPC quantization)
at 36 and 46 bits per frame with a much lower complexity for both
design and operation.

1. INTRODUCTION

A parametric approach based on Gaussian mixture models (GMM)
has been developed for the vector quantization (VQ) of linear-
predictive coding (LPC) parameters [1, 2]. This approach has
brought interest in the design of model-based quantization methods
as opposed to standard constrained VQ requiring stochastic code-
book training based on a given source database. Several variants of
GMM-based LPC quantization have been proposed including pre-
dictive methods [2, 3].

In this paper, we study a simplified framework of GMM-based
VQ in which predictive Karhunen-Loeve transform (KLT) coding
is used. This is equivalent to source coding with singular value
decomposition (SVD) or principal component analysis (PCA). This
also corresponds to the special case of predictive GMM-based VQ
with a single Gaussian component in the GMM. The motivations
for setting such a restriction are as follows:
• The complexity of GMM-based VQ is roughly linear in the

GMM order. This is true for both storage requirement and com-
putational cost. For instance, typical LSF quantization methods
[2, 3] use a GMM of 4 or 8, which implies a significant com-
plexity overhead compared to KLT coding with one Gaussian
component.

• The bit mapping in GMM-based VQ is usually not optimized to
be robust against bit errors. The related bit allocation methods
[2] distribute a certain amount of codewords among Gaussian
components, in such a way that a single bit error in the overall
quantization index can have a dramatic impact on the recon-
structed LSF parameters. KLT coding with one Gaussian com-
ponent can avoid this problem.

Although KLT coding has some advantages in terms of complexity
and robustness against bit errors, its performance is lower than that
of GMM-based VQ [4]. To compensate for this limitation, we pro-
pose to refine the source modeling by using non-Gaussian models
for transformed LSF prediction errors.

The main contribution of this work lies in the application of
generalized Gaussian modeling to improve the quantization perfor-

mance of predictive KLT coding. Generalized Gaussian modeling
has been used extensively in image and video coding – see for in-
stance [5, 6]. However, its application to speech coding is quite
new. We review existing methods to fit the free model parameter
of a generalized Gaussian model to real data and show that the pre-
diction error density function for LSF parameters is very close to
Laplacian. Futhermore we show that generalized Gaussian model-
ing brings a non-neglegible performance gain over simple Gaussian
modeling for predictive KLT coding of LSF parameters.

This paper is organized as follows. We review existing LPC
quantization methods based on KLT coding in Section 2. We distin-
guish memoryless and predictive variants and give an outline of the
method developed in this work. The generalized Gaussian distribu-
tion is defined in Section 3, where we also review estimation meth-
ods for the free parameter of a generalized Gaussian model. The
proposed predictive model-based quantization method is described
in Section 4. Experimental results for wideband LSF quantization
are presented and discussed in Section 5 before concluding in Sec-
tion 6.

2. LPC QUANTIZATION BASED ON KLT CODING

We follow here the notations of [1]. The probability density func-
tion (pdf) of LSF vectors x in dimension n can be modeled [2] by a
Gaussian mixture model of order M given by

f (x|Θ) =
M

∑
i=1

ρi fi(x|θi), (1)

where fi(x|θi) =
1√

(2π)n|det(Ci)|
e−

1
2 (x−µi)T C−1

i (x−µi), (2)

with the following constraints: ρi > 0 and ∑M
i=1 ρi = 1. The dimen-

sion n is usually set to 16 or 18 for wideband speech signal (sampled
at 16 kHz). The set of GMM parameters is given by

Θ = {ρ1, · · · ,ρM ,µ1, · · · ,µM ,C1, · · · ,CM} ,

where ρi, µi and Ci are respectively the weight (a priori probabil-
ity), the mean vector and the covariance matrix of the i-th GMM
component. For a given source database, Θ is usually estimated
using the E-M algorithm [7].

2.1 (Memoryless) mean-removed KLT coding
Memoryless GMM-based quantization is illustrated in Figure 1 (a).
For an input LSF vector x of dimension n, the quantized LSF vec-
tor x̂ is selected among M candidates x̂(i), with i = 1, · · · ,M, by
minimizing a distortion criterion:

x̂ = x̂( j) where j = arg min
i=1,··· ,M

d(x, x̂(i)). (3)

The selection criterion d can be the log-spectral distortion [2] or a
simple weighted Euclidean distance [4]. The candidate x̂(i) is the
representative of x in the i-th GMM component (or cluster). The
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Figure 1: Principle of GMM based VQ: Ti and Ni corresponds respectively to KLT transform and normalization by standard deviation

candidates x̂(i) are computed in [2] by mean-removed Karhunen-
Loeve transform (KLT) coding using the parameters µi and Ci of
the i-th GMM component. The KLT matrix Ti and normalization
factors σi j are derived from the eigenvalue decomposition of co-
variance matrices Ci [2]:

Ci = Ti diag(σ2
i1, · · · ,σ2

in) T T
i (4)

where σ2
i1 ≥ ·· · ≥ σ2

in are the eigenvalues of Ci and the matrix Ti
comprises the eigenvectors of Ci. In Figure 1 (a) the block Ni refers
to the normalization by σi j . Usually the quantization Qi of the
source z(i) relies on a Gaussian model assumption – for instance
in [2] non-uniform scalar quantization with high-rate-optimized
Gaussian companding is used.

2.2 Predictive KLT coding
Predictive KLT coding is illustrated in Figure 1 (b). In this case we
define the mean-removed input LSF vector y of dimension n where
y = x− µ and µ is the long-term mean of x. The GMM model
appromixates the pdf of the prediction error e = y− ỹ. In general a
moving-average (MA) or autoregressive (AR) linear predictor P is
used to compute the prediction ỹ. The actual quantization of e fol-
lows the GMM-based VQ described previously for the memoryless
case.

2.3 Outline of the proposed method
The quantization method developed in this work is similar to the
predictive GMM-based VQ of Figure 1 (b). The main difference
is that we choose to work with only one GMM component to re-
duce complexity and improve robustness against bit errors. Fur-
thermore we apply generalized Gaussian modeling on each com-
ponent z j of the source z (which corresponds to the normalized
KLT-transformed prediction error). We apply an efficient quantiza-
tion (model-based Lloyd-Max scalar quantization) using this non-
Gaussian model for z.

3. GENERALIZED GAUSSIAN MODELING

3.1 Definition
The pdf of a zero-mean generalized Gaussian random variable z
with standard deviation σ is given by:

gα (z) =
A(α)

σ
e−|B(α) z

σ |α , (5)

where α is a shape parameter describing the exponential rate of
decay and the tail of the density function. The parameters A(α) and
B(α) are given by:

A(α) =
αB(α)

2Γ(1/α)
and B(α) =

√
Γ(3/α)
Γ(1/α)

, (6)

where Γ(.) is the Gamma function defined as:

Γ(α) =
∫ ∞

0
e−ttα+1 dt. (7)

The Laplacian and Gaussian distributions correspond to the special
case α = 1 and 2 respectively. The generalized Gaussian model is
useful to approximate symetric unimodal distributions.

3.2 Estimation of the shape parameter α

Estimation methods of the shape parameter α are reviewed here.
We classify estimation methods in ”closed loop” and in ”open
loop”. ”Closed loop” methods estimate α by minimizing a distance
criterion between data and model, while ”open loop” methods pro-
vide an estimate of α without any distance criterion.

We assume that we are given samples {z1,z2, . . . ,zN} from a
random variable z of pdf g(z). We estimate the shape parameter α
of a generalized Gaussian model gα (z) approximating g(z). To do
so the normalized histogram p̃(z) of z1,z2, . . . ,zN is compared with
a sampled version of gα (z). The sampling step size is defined as
a constant q. The estimation procedure is illustrated in Figure 2.
Without loss of generality the random variable z is supposed to be
of unit variance and zero-mean.

Figure 2: Estimation procedure for the shape parameter α .



3.3 Estimation methods in closed loop

3.3.1 χ2 quantity [8]

The χ2 quantity evaluates a kind of distance between two probabil-
ity density functions. We use here a χ2 distance given by:

χ2(α) = ∑
z=...,−q,0,q,...

(p̃(z)− pα (z))2

p̃(z)+ pα (z)
, (8)

where pα (z) = gα (z)×q.
The estimated shape parameter is obtained by minimization :

α̂ = argmin
α

χ2(α) (9)

3.3.2 Kolmogorov-Smirnov statistic [8]

The Kolmogorov-Smirnov statistic is defined as:

KS(α) = max
z
|G(z)−Gα (z)| (10)

where G(z) and Gα (z) are the distributions:

G(z) =
z/q

∑
n=−∞

p̃(nq) and Gα (z) =
z/q

∑
n=−∞

pα (nq) (11)

The estimated shape parameter α̂ is found by minimization:

α̂ = argmin
α

KS(α) (12)

3.3.3 Kullback-Leibler divergence [9]

The Kullback-Leibler divergence is given by:

D(p̃||pα ) =− ∑
z=...,−q,0,q,...

pα (z) log
p̃(z)

pα (z)
(13)

The estimated shape parameter α̂ is obtained by minimizing this
measure between the histogram p̃ and the generalized Gaussian
model:

α̂ = argmin
α

D(p̃||pα ) (14)

3.4 Estimation methods in open loop
Several methods are omitted here, e.g. ML estimation [5].

3.4.1 Estimation based on kurtosis (κα )

For a generalized gaussian source z of shape parameter α , the kur-
tosis κα is given by [8]:

κα =
E(z4)
E(z2)2 =

Γ(5/α)Γ(1/α)
Γ(3/α)2 (15)

It can be verified that logκα is approximatively a linear function of
1/α [6]:

logκα ≈ 1.447
α

+0.345 (16)

Based on this approximation, the shape parameter α can be esti-
mated as [6]:

α̂ ≈ 1.447
ln κ̂−0.345

, (17)

where κ̂ is estimated from the data:

κ̂ =
1
n ∑n

i=1 z4
i( 1

n ∑n
i=1 z2

i
)2 (18)

3.4.2 Method proposed by Mallat [10]

A relation between the variance E(z2), the mean of the absolute
value E(|z|) and the shape parameter α is given by [6]:

E(|z|)√
E(z2)

=
Γ(2/α)√

Γ(1/α)Γ(3/α)
= F(α) (19)

The shape parameter α can be estimated as:

α̂ = F−1
(

m̂1√
m̂2

)
(20)

where m̂1 = 1
n ∑n

i=1 z2
i and m̂2 = 1

n ∑n
i=1 |zi|.

3.4.3 Estimation based on differential entropy (hα )

The differential entropy of a generalized Gaussian distribution is
given by [6]:

hα =
1
2

log2

[
4Γ(1/α)3

α2Γ(3/α)

]
+

1
α log2

(21)

Based on high rate quantization theory, it can be shown that the en-
tropy rate R of the quantized random variable z and the differential
entropy h(z) are related as follows :

R≈ h(z)− log2 q (22)

The estimated shape parameter α̂ is given by [11]:

α̂ = h−1
α

[
R̂+ log2 q

]
(23)

where R is the estimated entropy rate of z:

R̂ =− ∑
z=...,−q,0,q,...

p̃(z) log2 p̃(z) (24)

4. PREDICTIVE KLT CODING
WITH GENERALIZED GAUSSIAN MODELING

The coding method developed in this work is illustrated in Figure
3. It follows the principle of predictive KLT coding explained in
Section 2. We compute the mean-removed source y = x−µ where
µ is the long-term average of x. The estimate ỹ is given by the
switched AR(1)/MA(1) predictor P, for which:
• The MA(1) prediction matrix is set to diag(1/3, · · · ,1/3) (as in

AMR-WB LPC quantization [12]),
• The AR(1) (diagonal) prediction matrix is optimized in closed-

loop.
This switched predictor, which is a kind of safety-net VQ, yields a
performance close to AR(1) with improved robustness against chan-
nel impairments. Due to switching between AR(1) and MA(1), one
bit is sent to indicate the selected prediction ; the selection is per-
formed in open-loop by minimizing the energy of the prediction er-
ror e = y− ỹ. The KLT matrix T and normalization N by standard
deviation σ j are derived from the eigenvalue decomposition of the
covariance of e. Two different quantization methods are used: ei-
ther non-uniform scalar quantization with high-rate Gaussian com-
panding [2] or model-based Lloyd-Max quantization. In the lat-
ter case we optimize Lloyd-Max centroids based on a generalized
Gaussian model, which is different from classical codebook train-
ing with a given source database.

4.1 Model-based scalar quantization
4.1.1 Companded scalar quantization for a Gaussian model [2]

As shown in Figure 3, the source z = (z1, · · · ,zn) can be en-
coded by companded scalar quantization. Under the high-rate and



Figure 3: Predictive KLT coding with model-based non-uniform scalar quantization.

Gaussian assumptions, α j=1...n = 2, the optimal companding for a
unit-variance random variable z is given by [3]:

c(z) =
1
2
(1+ erf (z/

√
6)), (25)

where erf is the error function erf (z) = 2√
π

∫ z
0 e−t2

dt. The source
z ∈ [−∞,+∞]n is mapped into a source d ∈ [0,1]n with d =
(c(z1), · · · ,c(zN)). Uniform scalar quantization in [0,1]n is applied
to d: if d j is quantized with L j ≥ 1 scalar levels, the reconstruc-
tion d̂ j is given by d̂ j = ([d jL j − 1

2 ]+ 1
2 )/L j where [.] denotes the

rounding to the nearest integer.

4.1.2 Lloyd-Max quantization for a generalized Gaussian pdf

An alternative approach is shown in Figure 3, where the source
z = (z1, · · · ,zn) is encoded by Lloyd-Max quantization [13]. We
optimize here the Lloyd-Max quantizer using the theoretical pdf of
the source model. This model-based approach allows to circumvent
the costly training of stochastic codebooks using a database. This
makes the quantization more versatile, as it can be easily reopti-
mized by updating the generalized Gaussian model parameters.

The decision thresholds ti, and the reconstruction levels si of
the quantizer are found by the following iterative process until con-
vergence of si:

ti =
1
2

(si + si−1) i = 2, . . . ,L j (26)

with t0 =−∞ and tL j+1 = +∞

si =
∫ ti+1

ti z gα j (z)dz
∫ ti+1

ti gα j (z)dz
i = 1, . . . ,L j (27)

where L j is the allocated number of levels.

4.2 Bit allocation
The problem of bit allocation to several generalized Gaussian ran-
dom variables has been studied in [6]. Given an allocation per sam-
ple Rtot = 1

n ∑n
j=1 R j , the scalar level quantization L j=1...n for a ran-

dom variable z j=1...n of shape parameter α j=1...n is defined as:

L j = 2R j = 2−
1
2 log2( λ

n )+ 1
2 log2(2log(2)F (α j)), (28)

where F (α j) =
Γ(1/α j)3

3α2
j Γ(3/α j)

e
2

α j (29)

and λ = 2−Rtot 2log(2)
n

∏
i=1

(
F (α j)

n

)
. (30)

The scalar quantization levels L j=1...n are rounded and further op-
timized by a greedy bit algorithm similar to [3]. Note that the op-
timization of L j can be easily constrained to take into account the
robustness against bit errors.

5. EXPERIMENTAL RESULTS FOR WIDEBAND LSF
QUANTIZATION AND DISCUSSION

5.1 Experimental setup
The experimental setup is similar to that of [3]. The database used
for this work is the NTT-AT wideband speech material (sampled at
16 kHz) without silence frames . The downsampling to 12.8 kHz
and linear-predictive analysis of AMR-WB [12] is used to extract
LSF vectors of dimension n = 16. A training database comprising
607,386 LSF vectors was extracted, and a separate test database of
202,112 LSF vectors was also built.
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Figure 4: Normalized histograms p̃(z j) of data samples z j=1...16
compared with a Gaussian model with pα=2(z) = gα=2(z)×q.

5.2 Shape parameters of generalized Gaussian models
Figure 4 compares the normalized histograms p̃(z j) of samples
z j=1...16 with a Gaussian distribution, while Table 1 presents the
values of the shape parameter α j for the estimation methods using
the same step size q. These results show that generalized Gaussian
modeling provides a better approximation than a Gaussian model.
Furthermore, it turns out that methods in ”closed loop” give bet-
ter results than the ”open loop” ones. The best estimation in ”open
loop” is the method proposed by Mallat. For the next part, the esti-
mation method of the shape parameter will use the method proposed
by Mallat. This allows to optimize design parameters in a very ef-
ficient way. The shape parameters α j=1...16 are between 0.89 and
1.70 with the method proposed by Mallat.

5.3 Spectral distortion
The performance of LSF quantization is evaluated with the usual
spectral distortion (SD) [14]. The SD statistics obtained for switch
AR(1)/MA(1) predictive LSF quantization can be found in Table 2.
The total bit allocation is 36 or 46 bits ; one bit is used to indicate
the predictor switch, while the rest – 35 or 45 bits – is allocated to
quantize the transformed prediction error z.



Table 1: Shape parameters α j=1...16 estimated on the training data-
base of vectors z .

j χ2 KS KL Mallat κα hα
1 1.04 1.11 1.03 0.98 0.93 0.91
2 1.14 1.31 1.14 1.11 1.06 1.05
3 1.15 1.22 1.15 1.12 1.05 1.08
4 1.18 1.28 1.17 1.14 1.05 1.09
5 1.19 1.16 1.19 1.15 1.06 1.11
6 1.35 1.42 1.35 1.32 1.20 1.24
7 1.39 1.32 1.39 1.37 1.26 1.31
8 1.44 1.44 1.43 1.40 1.25 1.32
9 1.50 1.50 1.50 1.49 1.37 1.42
10 1.48 1.52 1.47 1.46 1.33 1.39
11 1.47 1.46 1.47 1.46 1.33 1.38
12 1.52 1.54 1.52 1.51 1.40 1.45
13 1.63 1.63 1.62 1.62 1.49 1.54
14 1.66 1.68 1.66 1.65 1.51 1.57
15 1.71 1.73 1.71 1.70 1.56 1.61
16 0.95 0.99 0.94 0.89 0.86 0.87

The results show that model-based Lloyd-Max (LM) quanti-
zation improves the performance compared to companded scalar
quantization (SQ). This is due to the fact that the related compand-
ing is optimized for a Gaussian source coded at high bit rates; yet,
the high-bit rate assumption is not valid for practical LPC quantiza-
tion. In the case of LM quantization with α = 2 the gain in average
SD over companded SQ is around 0.03-0.11 dB but the amount of
outliers is slightly increased. In the case of LM quantization with
optimal α the gain in average SD is more significant (around 0.05-
0.13 dB) and the amount of outliers is significantly reduced.

If we compare the performance of Lloyd-Max quantization for
α = 2 and optimal α , it turns out that generalized Gaussian model-
ing still brings a non-neglegible improvement.

The performance of the LPC quantizer used in AMR-WB is
also reported. It shows that the performance of the proposed model-
based coding is close (but slightly inferior to) classical constrained
VQ. The performance gap between AMR-WB and LM with opti-
mized α is around 0.07-0.10 dB in average SD.

Table 2: Results for switched AR(1)/MA(1) predictive LSF quanti-
zation vs AMR-WB LPC quantization: comparison between com-
panded SQ and model-based LM quantization.

(a) Results at 36 bits per frame
Quantization avg. SD SD≥ 2 dB SD≥ 4 dB
methods (dB) (%) (%)

Companded SQ 1.36 6.71 0.675

LM, α = 2 1.25 9.43 1.480
LM, optimal α 1.23 6.51 0.293

AMR-WB [12] 1.13 3.01 0.015
(b) Results at 46 bits per frame

Quantization avg. SD SD≥ 2 dB SD≥ 4 dB
methods (dB) (%) (%)

Companded SQ 0.90 2.42 0.323

LM, α = 2 0.87 4.20 0.710
LM, optimal α 0.85 1.71 0.057

AMR-WB [12] 0.78 0.45 0.003

5.4 Complexity
The memory requirement for fixed-point AMR-WB LPC quantiza-
tion tables is 6.7 kword (16-bit words) [12]. For the predictive KLT
coding with model-based Lloyd-Max quantization, the memory re-
quirement is 0.8 kword assuming a fixed-point implementation. In
particular we need to store for each bit allocation (36 or 46 bits) the

KLT matrix T , the eigenvalues σ j , the LM centroids as well and
the number of quantizations. It would be possible to reduce even
more the memory consumption, for instance by forcing a unique
KLT matrix T independent of bit allocation. The memory cost of
model-based Lloyd-Max quantization is very small, yet it depends
slightly on bit allocation. On the other hand non-uniform scalar
quantization with high-rate Gaussian companding has a complex-
ity independent of bit allocation, yet this technique implies to store
tables to implement the compander c.

Moreover, the total computational cost of predictive KLT cod-
ing with model-based Lloyd-Max quantization in fixed-point is es-
timated around 0.1 wMOPS (weighted Million Operations per Sec-
ond) whereas it is around 1.9 wMOPS for AMR-WB LPC quanti-
zation.

6. CONCLUSIONS

In this paper we presented a predictive KLT quantization method
using generalized Gaussian modeling for wideband LSF speech pa-
rameters. This method was compared to AMR-WB LPC quantiza-
tion. The proposed method has much lower complexity (computa-
tion cost, storage requirement) and similar performance.
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