COMPANDED LATTICE VQ FOR EFFICIENT PARAMETRIC LPC QUANTIZATION

Marie Ogef, Séphane Ragot and Roch Lefebvfe

T University of Sherbrooke, Dept. of Electrical Engineering, Sherbrooke, QC, J1K 2R1 Canada
* France Blecom R&D/DIH/IPS, Av. Pierre Marzin, 22307 Lannion Cedex, France
E-mail: {marie.oger,roch.lefebvi@usherbrooke.ca, stephane.ragot@francetelecom.com

ABSTRACT 2. REVIEW: GMM-BASED LSF QUANTIZATION

Source coding based on Gaussian Mixture Models (GMM) has beehhe line spectrum frequencies (LSF) provide an efficient LPC rep-
recently proposed for LPC quantization. We address in this papeesentation for quantization purposes [4]. The p.d.f. of LSF vectors
the related problem of designing efficient codebooks for Gaussiar in dimensionn can be modeled [2] by a Gaussian mixture model
vector sources. A new technique of ellipsoidal lattice vector quantiof orderM given by
zation (VQ) is described, based on 1) scalar companding optimized

for Gaussian random variables and 2) rectangular lattice codebooks

with fast trellis-based nearest neighbor search. The Barnes-Wall f(x|©) =Y aifi(x|6),
lattice A1 in dimension 16 is applied to quantize the line spec- [
trum frequencies (LSF) of wideband speech signals. The LSF are
computed in a manner similar to the AMR-WB speech coding algowhere
rithm. The performance of memoryless and predictive LSF quanti-
zation for different GMM orders (4, 8 and 16) is evaluated at 36 and fi(x]6) = 1 e 2 (=) Z  (x—p)
46 bits per frame. The companded lattice VQ is shown to perform (2mndet(;)

better than its scalar counterpart, with similar complexity.
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with the following constraints:a; > 0 and M, aj = 1. The di-
1. INTRODUCTION mensionn is usually set to 10 for narrowband speech co, 16 in the

. . . wideband case. The set of GMM parameters is given by
A parametric approach based on Gaussian mixture models (GMM)

has been recently developed for the vector quantization (VQ) of
linear-predictive coding (LPC) parameters [1, 2]. Although the cod-
ing performance is limite@ priori by the accuracy of the underly- — : : . . o
ing p.d.f. source model, this approach has some interesting featurg herea;, ki and2; are respectively the weight (a priori probabil

o - ; i ), the mean vector and the covariance matrix of itte GMM
such as asymptotic bit-rate savings [1], bit-rate scalability and comz 1o nent For a given source databa@es usually estimated
plexity independent of bit rate [2]. '

In this paper, we address a problem related to GMM-based VQl:JSIng the E-M algorithm [S].

the design of efficient codebooks to represent GMM components, 1 sMM-based VQ by mean-removed KLT coding

i.e. encode Gaussian vector sources. The main contribution of the

paper is the development of a new technique of companded latticBhe memoryless GMM-based VQ of [2] is illustrated in Figure 1.

VQ to improve the performance of parametric LPC quantizationFor an input LSF vectoxk, the quantized LSF vectdt is selected

We address the specific caseld" order LSF guantization for a amongM candidate(), with i = 1,---,M, by minimizing a dis-

16 KHz sampled signal. This choice has several motivations. Firstortion criterion:

multistage LPC quantization, for example as in AMR-WB [3], may ) )

receive different numbers of bits. In AMR-WB, 36 or 46 bits are al- % =% wherej=arg min d(x,x").

located to predictive two-stage LSF quantization depending on the i=1,-M

coder bit rate. Even if the first stage codebooks are shared, several ,

sets of tables have to be stored for the second stage and for differéhie candidaté() is the representative of in thei-th GMM com-

bit rates. The bit-rate scalability of GMM-based VQ may be ex-ponent (or class). With this point of view, the computatiorkafan

ploited to reduce storage requirements. Furthermore, most resule interpreted as closed-loop classified VQ. The selection criterion

on parametric LPC gquantization [1, 2] deal with narrowband speech is the log-spectral distortion (LSD) in [2] — a simple weighted Eu-

coding. Yet, the performance/complexity advantage of GMM-basedlidean distance may also be used [6]. The candid&fésre com-

VQ over split/multistage VQ should be more apparent in the wideputed in [2] by mean-removed Karhunen-Loeve transform (KLT)

band case, where high LPC orders and bit allocations are used. coding, which is known to be optimal for the quantization of corre-
This paper is organized as follows. The LPC coding methodated Gaussian sources [7]. This encoding procedure can be easily

of [2] is reviewed in Section 2. A new technique of compandedextended to the case of predictive LSF quantization [2].

lattice VQ is presented in Section 3 for mean-removed KLT cod-

ing of Gaussian components. A specific greedy bit allocation al-

gorithm is also described in this section. In Section 4, the perfor-

mance/complexity of memoryless and predictive LSF quantization

at 36 and 46 bits per frame is evaluated for different GMM orders

(4, 8 and 16). The potential advantage of GMM-based LPC quan-

tization is also discussed over other quantizer structures. The con-

clusions are drawn in Section 5.
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Figure 2: Coding of uncorrelated Gaussian components by companded VQ.

Based on the parametqusandZ; of thei-th GMM component,
the candidat&() is given by [2]

xU =T Qi (T — ) + Hi

whereT; is the KLT matrix which decorrelates thth GMM com-
ponent and);(.) is a quantization method optimized for the uncor-
relatedi-th GMM component. The computation ©f and the opti-

mization ofQ;j(.) require to compute the eigenvalue decomposition

of the covariance matriX; as
%i = Q diag(of, -+, o) QF

whereoﬁ > > oi% are the eigenvalues & (they are assumed
ordered without loss of generality) and the mat@ixcomprises the
eigenvectors OE;.

The eigenvalueso?, --,02 (i = 1,..,M) and the mixture

The sourcez € [—o,+0]" is thus mapped into a sourdec [0, 1]"
with d = (c(z1),---,c(zn)). Scalar quantization if0,1]" is then
applied tod. If di is quantized witiL, > 1 scalar levels, the recon-
structiondy is given by [9]:

1
5]

(g~ 31+ )/

where[.] denotes the rounding to the nearest integer.
The scalar quantization described above can be interpreted as
follows. We define a codebodK(Z") as :
€I =7"n%

where the regior# of R" is given by

% =1[0,Ly — 1] x-+-[0,Ln— 1.

weightsay, - - - , oy are used in [2] to distribute bits between classes.Then, the reconstructiod = (dL .. 7dAn) can be written asd =

For a bit budgeRot per vector, the number of biig allocated to the
i-th GMM component is constrained so t28t + - - - + 2Rv < 2Rt
An analytical solution foR; can be derived assuming high bit rates

((F1+3)/L1,--, (Fn+3)/Ln) wheref = (fq,--- ,fn) is a codevec-
tor in € (Z"™). This interpretation opens the door to performance
improvements by using a “good” lattice insteadZ¥

and good “separation” between classes [2]. An equal bit distribution

(Ry =--- = Ry) may also be used [6].

2.2 Caoding of uncorrelated Gaussian components by bit-rate-
scalable companded scalar quantization

3. A TECHNIQUE OF COMPANDED LATTICE VQ
3.1 Preliminaries: binary lattices and error-correcting codes
A lattice \ in R" (n > 1) is a set of discrete points defined by:

With the method of [2], the design of GMM-based VQ is some-
how reduced to the problem of encoding zero-mean uncorrelated
Gaussian components. The non-uniform scalar quantization of [2]

is illustrated in Figure 2, in the case of a zero-mean Gaussian source

y = (y1,--- ,yn) of covariance matrixiag(cZ,--- ,02). This tech-

A= {iZiVi(Zlf“ ,{n) € Zn},

wherevy,---, vy are linear independent basis vectors. Two simple

nigue has two interesting features: bit rate scalability and a COMaxamples of lattice<Z" andDy, are illustrated fon = 2 in Figure

plexity independent of bit rate.

In Figure 2, the elementg are normalized by;, so as to obtain
an i.i.d. zero-mean unit-variance Gaussian souree(zy,- - ,Z).
An “optimal” scalar compressar(.) is then applied t@. Under

the high-rate assumption the optimal compressor for a unit-variance

Gaussian random variables given by [8]
1
c(u) = é(1+erf(u/\/é)),
whereerf is the error function

2 (U _p
erf(u):WT/O e dt

The inverse operation is given by [8]

cHu)=v6erft2u—1).

3, wherevy = (1,0), vo = (0,1) for Z2 andv = (2,0), vo = (1,1)
for D,. The family of latticeDy, is defined by:

Dn={(Uz,+-,Un) € Z"|up +--- 4 Un ever}.

In this work we will restrict ourselves tbinary latticeswhich
are extensively studied in [10]. Binary lattices are connected to
block error-correcting codes. For instanBg, may also be defined
as:
Dn 27"+ [n,n—1,2]

{2u+clueZ"cenn-12}.

where[n,n—1,2] is the binary parity-check code of lengthand

Hamming distance 2, havir@)—! codewords. In general, a binary
lattice A may be decomposed as:

A=pZ"+N={pu+tclucZcen}.
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Figure 3: Examples of 2-D latticesz? and D, — with basic par-
rallepipedn.

wherep = 2™ (with minteger> 0) andrl are respectively the peri-
odicity and basic parallepiped 6 This point of view is illustrated
in Figure 3 forZ2 andD,. It can be checked th@i= 1, 1M = {(0,0)}
for zZZ andp=2,M =[2,1,2] = {(0,0),(1,1)} for D5.

In practice, we will use here the so-called Barnes-Wall lattic

lattice is defined as [10]:
NAig = 4716+ 2[16,11,4] 4 [16,1,16] (1)

where[16,11,4] is a 2nd-order Reed-Muller code afib, 1,16 is

the binary repetition code of length 16. From Eq. 1, we find that

N1 has a periodicity of 4 and a basic parralepipee 2[16,11, 4] +
[16,1,16] comprising2' ! = 4096poaints.
3.2 Companded lattice VQ

We define here a fixed-rate codebook from a binary latde R"
as:
ECN)=NNZA

where
%:[Ovprnlfl]x[o7pn‘h*1]7 (2)

p is the periodicity ofA andmy is an integer> 1 (k=1,---,n).

e
16 in dimension 16 to encode wideband LSF vectors. This binary--

e Compute the sub-index off — pu) € M using the error-
correcting codes defining. (In this work, we employ\ = Ayg.
The sub-index of — pu is therefore represented with 12 bits.)

An optimal searctprocedure ir¢’(A) is described in [10] based
on atrellis description andoset codeonstruction of the binary lat-
tice A — it boils down to computing the branch metrics and parsing
the trellis of A with the Viterbi algorithm. The metrics are computed
here using the mean-square error criterion. An important property
of this search procedure is that theerloadin €' (A) is implicit
when computing the metrics and parsing the trellis. Note that the
trellis of A1 has 4 sections and 16 states [12, p. 1769]. The trellis-
based search i (A1) has a higher complexity than rounding in
7", yet the increase in complexity is very limited.

3.4 Optimization of the multiplicity factors

A modified version is provided here to allocate the multiplicity fac-

tors my specifying the regionZ of Eq. 2 and to encode the source

y described in Section 2.2. Given a bit bud&eind the covariance

matrix diag(c?, -, 67) of y, the allocation procedure consists of

the following steps:

1. Reserve bits to inde : R := R— Rp (for instanceRpy = 0 for

Z", n— 1for Dy, 12 forAqg). Initialize:m¢=1,k=1,---,n.

2. While i_,m¢ < 2R, m, m; + 1 where j
argmax-1,... n(0k/mk)?

3. While [IR_; m¢ < 2%, mj := m; + 1 where]j tests all positions
from 1 ton sorted according téoi/me)%, k=1,--- ,n.

Note that in this work this algorithm is also used to allocate the

number of quantization levels, to companded scalar quantization
sincemy = L for A = Z".

4. EXPERIMENTAL RESULTS AND DISCUSSION
4.1 Experimental setup

The database used for this work is the NTT-AT wideband speech
material (sampled at 16 kHz) which is multilingual, multi-speaker
and lasts 5 hours — this material is stored on four CDs. The down-
sampling to 12.8 kHz and linear-predictive analysis of AMR-WB
[3] is used to extract LSF vectors of dimension 16. Note that si-

Since the regio[@ is chosen as a para”e”pedic region of space, Welence frames are discarded. Three CDs are selected to build a train-

obtain a rectangular lattice codebook. The side&ddre restricted
to have a length multiple of the lattice periodicityo simplify the
indexing and search algorithms #i(A). Following [11], we will
refer tomy as amultiplicity factor. An example of codebook (A)
is illustrated in Figure 3 (b) foA = D, my = 3andmp, = 2. In this
figure, the 12 codevectors #i(D,) appear ase’ instead of ©’.

ing database comprising 607,386 LSF vectors, while the other CD
is used to generate a test database of 202,112 LSF vectors. The E-
M algorithm [5] is applied to the training database to estimate the
GMM parameters for an ordev =4, 8 and 16 (with full covari-
ance matrices, and means initialized by the generalized Lloyd-Max
algorithm). The LSF vectors in the test database are quantized with

The companded scalar quantization method described in Setie GMM-based method of [2]. Memoryless and AR(1) predic-
tion 2.2 and Figure 2 can then be extended as follows. Rectangiive GMM-based VQ are tested. In the AR(1) predictive case, the
lar lattice VQ is applied to the vectat instead of scalar quantiza- GMM parameters are trained on the (open-loop) prediction residual.

tion. The number of quantizatiAon levels is given loy= pmy for
k=1,---,n. The reconstructiody is then

de= (fc+ 3)/ (P,

wherer = (fq,---,fn) is the nearest neighbor ef= (pdym —

3.3 Indexing ¢ (A) and nearest-neighbor search irfg’(A)

The problems of indexing’ (A) and finding the nearest neighbor
in €(N\) are solved in [10], in the casg, =1, k=1,--- ,n. The
algorithms of [10] can be readily extended to the general ogse
1, k=1,---,n. The indexing oft € ¥(A) can be split into the
computation of two sub-indices, as follows [11]:

e Findu=(ug,---,un) € Z"with0<ux <my (k=1,---,n)such

thatt € N+ pu.
e Compute the sub-index af using[log, [13_; mk] bits.

The AR(1) prediction matrix, which is constrained to be diagonal,
is estimated in open-loop assuming a perfect reconstruction. The
GMM components are quantized by mean-removed KLT coding,
using%(Z1%) or €(A4). The bit allocation to GMM components
(or classes) is done according to [2]. The number of quantization
levelsLy and multiplicity factorsmy are optimized with the modi-
fied greedy algorithm described in this paper.

4.2 Spectral distortion statistics

The performance of LSF quantization is evaluated with the well-
known spectral distortion (SD) [4]. The SD statistics obtained for
memoryless and AR(1) predictive cases can be found in Tables 1
and 2, respectively. Two bit rateBy(; =36 and 46 bits) and differ-
ent GMM orders 1 =4, 8 and 16) are tested. The histograms of SD
are also provided in Figures 4 and 5 fag: =46 bits andv = 16
only.

The results show that the companded lattice VQ basefiign
improves the performance compared to companded scalar quanti-
zation. The gain in average SD is small (around 0.05-0.08 dB) in



all cases, and the amount of outliers is typically reduced by 30-50
%. The rectangular lattice VQ developed here provides no shaping

Table 2: Results for AR(1) predictive LSF quantization.
(a) Results aRot = 36 bits per frame.

gain over scalar quantization, only a granular gain — the granular

gain of A1 overZ18is around 0.86 dB. This small granular gain in
the LSF domain has a limited impact in terms of SD. The bit alloca-
tion Ryt has no influence on the performance gap betweenZ,g

and/\1g—the average allocation to LSF is indeed 2.25 and 2.88 bit
per sample at 36 and 46 bits, respectively.
The performance improves with the GMM orddr The com-

plexity (computation load, storage) increases linearly wWith A

trade-off has to be found to be competitive with existing LPC quan

tization techniques.
The histogram of SD in the memoryless case is bimodal. In fact,
the SD is different depending on which GMM component is quan-

tized: thei-th conditional histogram of SD computed with the input
LSF vectors coded in theth GMM componentj = 1,--- ,M has

specific mean and shape. The results imply that the bit allocation to
GMM components developed in [2] may be improved — the under

A | M | avg.SD(dB) | SD>2dB (%) | SD> 4dB (%)
i) 112 5.12 0.0282
716 [8 1.08 3.01 0.0074
| 16 1.04 2.89 0.0029
7 1.06 353 0.0118
Mg | 8 1.03 2.97 0.0064
16 1.00 2.30 0.0009
(b) Results aRiot = 46 bits per frame.
A | M [ avg.SD(dB) | SD> 2dB (%) | SD> 4dB (%)
4 0.74 0.51 0.0035
716 [78 0.72 0.30 0.0005
16 0.69 0.17 0
74 0.69 0.06 0.0020
Mg [ 8 067 0.17 0.0005
16 0.64 0.09 0

lying assumptions (e.g. clear separation of GMM components) are
not always valid, at least in the memoryless case.

Table 1: Results for memoryless GMM-based LSF quantization.

(a) Results aRiot = 36 bits per frame.

M | avg.SD(dB) | SD> 2dB (%) | SD> 4 dB (%)
! 1.38 14.00 0.0262
716 [8 1.28 9.38 0.0067
16 1.23 6.72 0.0035
7 1.31 10.71 0.0341
Aig | 8 1.24 753 0.0044
16 1.19 557 0.0045
(b) Results aRiot = 46 bits per frame.
A | M [ avg.SD(dB) | SD> 2dB (%) | SD> 4 dB (%)
7 0.93 0.95 0.0034
716 [8 0.86 0.53 0.0005
16 0.83 0.29 0.0005
7 0.85 0.54 0.0019
Mg | 8 0.81 0.27 0.0005
16 0.77 0.13 0
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5. CONCLUSIONS

We presented a new technique of companded lattice VQ which ex-
tends the scalar quantization of [2]. This generalization keeps the
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Figure 5: Histograms of SD (AR(1) predictive case, 46 bits).
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