
A NEW BITPLANE CODER FOR SCALABLE TRANSFORM AUDIO CODING

Thi Minh Nguyet Hoang1 , Stéphane Ragot1, Marie Oger∗ , and Marc Antonini2

1Orange Labs/TECH/SSTP, Av. Pierre Marzin, 22307 Lannion Cedex
2Lab. I3S-UMR 6070 CNRS and Univ. of Nice Sophia Antipolis, rte des Lucioles, 06903 Sophia Antipolis

E-mail: {thiminhnguyet.hoang, stephane.ragot}@orange-ftgroup.com, am@i3s.unice.fr

ABSTRACT
This paper proposes a new bit plane coding method for signed in-
teger sequences. This method consists in mapping successive bit
planes onto quinary symbols (+, -, 0, 1, EoP), where the symbol
“EoP ” stands for “End of Plane”, and applying arithmetic coding.
Sign bits are efficiently coded in combination with the correspond-
ing most significant bit of non-zero integers. Moreover, bit planes
are scanned and coded in a non-sequential manner to exploit the
correlation between successive planes. Results for conversational
transform coding of wideband speech and audio signals – sampled
at 16 kHz – show that the performance/complexity of the proposed
bitplane coder is near equivalent to non-embedded coding (stack-run
coding), while offering additional flexibility (bitstream scalability).

Index Terms— Audio coding, speech codecs, entropy codes.

1. INTRODUCTION

Recently several scalable (or embedded) speech coders have been
standardized in ITU-T: G.729.1 [1], G.711.1 [2], and G.718 [3].
These coders are all based on a layered bitstream format, to extend
in bitrate and quality existing standards – respectively G.729, G.711,
and G.722.2 (AMR-WB) at 12.65 kbit/s for one mode of G.718. Bit-
stream scalability is indeed a very attractive feature to develop new,
improved coders in a smooth way by keeping interoperability with
existing coding formats used in existing equipments [4].

In this work we study bit plane coding, which is one possi-
ble technique for achieving bitstream scalability. Bit plane cod-
ing consists in decomposing integer sequences in binary, from most
significant bits (MSB) to least significant bits (LSB), and entropy
coding each successive bit plane. The resulting bitstream is scal-
able by nature, since least significant bit planes may be skipped if
needed. This technique has been extensively studied in audio cod-
ing (e.g. MPEG-4 BSAC [5], MPEG-4 SLS [6], proprietary audio
coders [7, 8]), image coding (e.g. JPEG2000 [9]) and video coding
(e.g. MPEG-4 FGS [10]). We focus here on speech and audio cod-
ing for conversational applications. Previous results in this context
were reported in [11], with a coding approach based on a probability
model of the signal spectrum. We revisit and extend this work by
proposing a new, flexible bit plane coding method, with better effi-
ciency and significantly lower complexity than the method described
in [11].

This paper is organized as follows. In Section 2, we present
the principle of bit plane coding and review a non-embedded cod-
ing technique known as stack-run coding. The new bitplane coding

This work was supported in part by the European Union under Grant
FP6-2002-IST-C 020023-2 FlexCode.

∗Marie Oger (marie.oger.sa@gmail.com) was with Orange Labs when
this work was done.

method is presented in Section 3. An application to transform cod-
ing of speech and audio signals is described in Section 4, including
a performance/complexity analysis, before concluding on the pro-
posed approach in Section 5.

2. ENTROPY CODING OF INTEGER SEQUENCES

We address the general problem of entropy coding a signed integer
sequence Y = [y1, . . . , yN], e.g. resulting from scalar quantization
of transform coefficients. In the following we review the principle
of bit plane coding, after presenting stack-run coding which serves
in this work as a reference method with respect to coding efficiency.

2.1. Stack-run coding

Stack-run coding [12] is a lossless coding method designed initially
for wavelet image coding. An example for the integer sequence Y

is provided for the next discussion:

Y = [0, 0, 0, +35, +4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−11] (1)

As shown in Fig. 1 (a), the integer sequence Y is mapped onto a
quaternary sequence (+, -, 0, 1) and then coded by context-based
arithmetic coding.

S
T
A
C
K

++ 0

0100+

1

0+

-+- 0

001-

Symbol conversion
Context-based

arithmetic coding

0 1 - + - 0

0

1

-

0

1

0

0

0

+

+

+35

+4

-11

10 zeros3 zeros

+, -, 0, 1

Context switch: run / stack

Y

(a) block diagram

(b) conversion example (c) context switching example

++

R
U
N

Fig. 1. Stack-run coding: principle and example.

The integer sequence Y is partitioned into two alternating con-
texts (“run” and “stack”): a run is a run length of zeros, while a
stack is a non-zero integer value. The exact mapping rules onto the

4137978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

quaternary alphabet are described in [12]. In short, run lengths are
expressed in binary using “-” and “+” instead of usual “0” and “1”.
The symbols “0” and “1” are associated with the binary decomposi-
tion of a stack; the MSB of each stack (always equal to 1) is replaced
by the associated sign (“+” or “-”).

Fig. 1 (b) shows the conversion of sequence Y. The three zeros
at the beginning give a run length of 3 (“11” in binary) converted to
“++”. Then, based on [12], the stack value “35” is incremented by
one to “36”, giving “001001” in binary from LSB to MSB. Replac-
ing the MSB by the “+” sign, the stack representation of “+35” then
becomes “00100+”. The rest of Y is converted in a similar way.
Overall, the 16 integer elements of Y are mapped onto 19 quater-
nary symbols “++00100+10+-+-0001-”, which are coded as shown
in Fig. 1 (c) by alternating contexts.

An application of stack-run coding to transform coding of wide-
band signals (sampled at 16 kHz) is described in [13].

2.2. Bit plane coding

In bit plane coding, the integer sequence Y is first decomposed in
binary with a sign-magnitude representation, to form a (K + 1)×N

binary matrix:

P(Y) =

�
����

s1 . . . sN

bK−1(y1) . . . bK−1(yN)
...

...
b0(y1) . . . b0(yN)

�
���� =

�
����

S(Y)
PK−1(Y)

...
P0(Y)

�
����

(2)
where K is the number of bit planes for magnitude, si is the sign bit
of yi and bk(yi) is the kth bit in the binary decomposition of |yi|.
Then, bit planes Pk(Y) (0 ≤ k < K), are coded successively from
MSB to LSB by entropy coding. In general, the number of bit planes
K has to be coded. Moreover, the bit si in the sign plane S(Y) is
transmitted only if |yi| �= 0; in such a case the sign bit si is said to
be significant. To allow decoding of partially received coded data, si

is transmitted as soon as one of the coded bits bk(yi) is equal to one.
The bit plane decomposition of the sequence given in Eq. 1 is:

P(Y) =

�
��������

0000000000000001
0001000000000000
0000000000000000
0000000000000001
0000100000000000
0001000000000001
0001000000000001

�
��������

=

�
��������

S(Y)
P5(Y)
P4(Y)
P3(Y)
P2(Y)
P1(Y)
P0(Y)

�
��������

(3)

There are K = 6 bit planes. The 16 integer elements of Y are
represented by 99 bits in total (6× 16 bits for magnitude + 3 signif-
icant sign bits). At first sight the bit plane representation appears to
be very redundant. The coding method proposed hereafter aims at
compacting this representation to reach an efficiency close to stack-
run coding.

3. NEW BITPLANE CODER

The notations introduced in Section 2 are reused in this section. The
bit plane coding method proposed in this paper is based on several
observations:

• The most straightforward approach to code P(Y) consists in
scanning each Pk(Y) sequentially (from bk(y1) to bk(yN)).
In general successive planes exhibit some correlations, which
ought to be exploited.

• In particular, runs of zeros in Y produce columns of zero bits
in P(Y). While stack run coding represents such runs by a
form of run length coding with “+” or “-”, bit plane coding
typically repeats the encoding of zero runs for each bit plane.

• If the integer sequence Y represents transform coefficients of
an audio signal, in many cases the spectrum is tilted in such
a way that there is more energy in low frequency than in high
frequency. In other words for most significant bit planes (k
close to K − 1) the probability P [bk(yj) = 0] with j close
to N is quite high.

To cope with runs of zeros, run lengths can be coded using “+” or
“-” symbols as in stack-run coding. To exploit correlation between
bit planes, a two-pass coding approach is developed. To address the
last point, a symbol “EoP ” (End of Plane) is introduced.

3.1. Mapping onto 5 symbols and one-pass coding of MSB

The proposed method starts with converting bit planes to 5 symbols:
“+”, “-”, “1”, “0” and “EoP ”. For each bit plane Pk(Y) of nb

bits where nb = N in case of MSB and nb < N for remaining bit
planes, the position pk of EoP is defined as follows:

pk = arg min
1≤i≤nb

{∀j ∈ [i, nb] bk(yj) = 0} (4)

The symbol “EoP ” indicates that all bits bk(yj) in Pk(Y) are zeros
for j ≥ pk. This allows finishing the encoding of Pk(Y) at the
position pk of “EoP ”.

In the MSB PK−1(Y), except for the last run which is replaced
by “EoP ”, all runs of zeros are converted to symbols “+” and “-”.
Run lengths are computed and written in binary and the bit values
0 and 1 are replaced by “-” and “+”, respectively, as in stack-run
coding [12]. If the run length is 2n − 1 (n is integer), the MSB of
the associated binary decomposition (always “+”) is omitted. On the
other hand, every time bk(yj) = 1 in the MSB, bk(yj) is replaced
by the sign bit si (either “0” or “1”).

For example, the MSB in the bit plane decomposition given in
Eq. 3 is: P5(Y) =

�
0001000000000000

�
. This bit plane is

converted to the quinary sequence [+ + 0 EoP], where “++” repre-
sent the first three zeros (3 verifies 22 − 1); “0” represents the sign
associated with the MSB value of 1 (+34 is positive) and the last
symbol “EoP” represents the series of zeros at the end.

3.2. Two-pass coding of other bit planes

To exploit the correlation between the successive bit planes, the nat-
ural, sequential order i = 1 to N is not used. Instead bit planes
Pk(Y) with k < K − 1 are coded with two passes which are con-
ditional on previous bit planes Pm(Y), m > k.

In the first pass, only bits in Pk(Y) located at significant posi-
tions are coded. The remaining bits, which are not coded in this first
pass, are coded in the second pass. To do so, we define the indicator
significantk(i), i = 1, . . . , N , as:

significantk(i) =

	
|yi|

2k+1

=

K−1�
m=k+1

bm(yi)2
m (5)

where �.� corresponds to the rounding of inferior integer. Based on
the values significantk(i) each bit plane is partitioned in two sub-
bitplanes: the first part contains only the bits at positions verifying
significantk(i) �= 0, the second part contains the bits at positions

4138

where significantk(i) = 0. In other words, the significant part of
Pk(Y) is defined as:

P
sig

k (Y) = {bk(yi), i ≤ 1 ≤ N |significantk(i) �= 0} (6)

and the non-significant part is defined as:

P
nonsig

k (Y) = {bk(yi), i ≤ 1 ≤ N |significantk(i) = 0} (7)

In the first pass, Psig

k (Y) is arithmetically coded directly in bi-
nary with 2 symbols (“0” and “1”) using one context. In the second
pass, P

nonsig

k (Y) is arithmetically coded with 5 symbols (“+”, “-
”, “1”, “0” and “EoP ”) using another context; the mapping onto 5
symbols is the same as for the MSB (see Section 3.1).

k P
sig

k (Y) P
nonsig

k (Y) First pass Second pass
5 0001000000000000 + + 0 EoP

4 0 000000000000000 0 EoP

3 0 000000000000001 0 −+ +1

2 00 00010000000000 00 + + 0 EoP

1 101 0000000000000 101 EoP

0 101 0000000000000 101 EoP

A coding example is shown above for the bit plane decomposition
given in Eq. 3. The MSB is coded as [+ + 0 EoP] as explained
in Section 3.1. The next bit planes are coded by the two-pass ap-
proach. In the first pass, significant positions are located. In this
example, only the fourth position is significant in the plane below
MSB. The associated bit value is “0”, therefore P

sig
4 = [0] and

only symbol “0” is coded in the first pass. The remaining bits in
P

nonsig
4 = [000000000000000] are coded in the second pass, us-

ing one symbol EoP in the quinary representation. For the next bit
plane, again only the fourth bit with value “0” is coded in the first
pass, so P

sig
3 = [0]. In the second pass, the remaining bits give

P
nonsig
3 = [000000000000001]. After mapping onto 5 symbols,

the sequence of 14 zeros is represented by “-+++”; the last bit value
1 is replaced by the sign “1” associated to yi = −11. The sym-
bol EoP is not used in this plane because the plane ends with “1”.
Subsequent bit planes are coded in a similar way. Consequently, 24
symbols are used to represent the input integer sequence Y.

4. APPLICATION EXAMPLE

The proposed technique is evaluated using a predictive transform
coding framework shown in Fig. 2. The input (mono) signal is
sampled at 16 kHz and divided in blocks of 20 ms (320 samples).
The encoder employs a linear-predictive weighting filter followed
by MDCT coding. An elliptic high-pass filter (HPF) is applied to
the input signal x(n) in order to remove the frequency component
under 50 Hz. Then, an 18th order LPC analysis and quantization
described in [13] is applied. The signal is perceptually weighted in
time domain by W (z). The resulting signal xw(n) is transformed
in frequency domain and further weighted (by pre-shaping). The
transform coefficients Xw(k) are divided by a step size q and scalar
quantized. The resulting integer sequence Y(k) is entropy-coded by
bit plane coding or stack-run coding. A rate control is used to opti-
mize the step size q to match a constraint of fixed bit rate. The bit
allocation to parameters is identical to [11] except that no bits are
reserved for noise injection: 43 bits for LPC parameters, 7 bits for
the quantization step, the remaining bits being allocated to entropy
coding.

HPF W(z)
x(n) MDCT &

pre-shaping

x
w

(n)

LPC analysis
& quantization

Rate
control

COD

DECQ-1W-1(z)

Xw(k)

Xw(k)
xw(n)

x(n)

Y(k)
Q

q

q

to stepsize
quantization

De-shaping
& IMDCT

from stepsize
inverse quantization

^
^ ^

^

x

÷

Fig. 2. Predictive transform coding framework.

4.1. Objective quality results

WB-PESQ [14] was used to evaluate objectively the quality of the
proposed coder and compare it with reference coders. Only clean
speech samples were used to compute the average MOS-LQO (Mean
Opinion Score – Listening Quality Objective) scores at various bi-
trate. The bit rate varied from 16 to 40 kbit/s. Fig. 3 shows the results
obtained for the reference coders (stack-run coder [13], model-based
bitplane coder [11], and ITU-T G.722.1 [15]) and the proposed bit
plane coder. Note that, except for G.722.1, all tested coders share
the same coding framework illustrated in Fig. 2; the difference lies
in the entropy-coding method, which impacts the selected quantiza-
tion step q for each coded MDCT frame. To evaluate the intrinsic
entropy-coding performance, enhancements such as pre-echo reduc-
tion or noise injection/substitution were not employed. The G.722.1
scores are given for information, because WB-PESQ is not recom-
mended for comparing different coding models.

16 20 24 28 32 36 40
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Bit rate (kbit/s)

W
B

−
P

E
S

Q
 s

co
re

 (
M

O
S

−
LQ

0)

stack run coding [13]
bitplane coding with model−based initialization [11]
proposed coder
G722.1

Fig. 3. Average WB-PESQ score when encoding and decoding at
the same bitrate (without noise injection).

Fig. 3 confirms the results of [11] where it was shown that stack-
run coding and model-based bit plane coding have very close perfor-
mance, except at low bit rates (e.g. 16 kbit/s) where there is a gap
around 0.2 MOS-LQO at low bit rates (e.g. 16 kbit/s). The new
method proposed in this paper reduces further this gap to 0.1 MOS-
LQO at low bit rates. The small performance difference between
stack-run coding and the proposed method could be predicted from

4139

the examples given previously in Sections 2 and 3, where the se-
quence Y in Eq.1 is represented by 19 and 24 symbols respectively.

16 20 24 28 32 36 40
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Bit rate (kbit/s)

W
B

−
P

E
S

Q
 s

co
re

 (
M

O
S

−
LQ

0)

Proposed coder (R
cod

=R
dec

)

Proposed coder (R
cod

=40 kbit/s, R
cod

>=R
dec

)

Fig. 4. Average WB-PESQ score with partial decoding (without
noise injection).

To show the benefit of bitstream scalability, Fig. 4 presents the
WB-PESQ results obtained for the proposed bit plane coder in the
case of partial decoding. In one case (solid line), the encoder and
decoder bit rates, Rcod and Rdec, are forced to be identical (as in
Fig. 3). In the other case (dashed line), the encoder bit rate is fixed
(Rcod = 40 kbits/s), the decoder operates at bit rates Rdec ≤ Rcod.
The latter case makes use of partial bit plane decoding. Fig. 4 shows
that the partially decoded case performs slightly better than non hi-
erarchical coder case above 20 kbit/s. The marginal difference at
low bit rates between the two cases can be explained by the fact that
the step size q and the reconstruction of the integer sequence Y are
optimized for each bit rate Rcod in the former case, while they are
optimized only once at the maximum of decoding bitrate 40 kbit/s in
the latter case.

4.2. Subjective quality results

An informal subjective test for speech and music signals coded at
24, 32 and 40 kbit/s was carried out with 4 expert listeners. Four
mono test signals sampled at 16 kHz were used: two speech sam-
ples (one male, one female) and two music samples (piano, trum-
pet). MUSHRA-like results showed that quality using the proposed
method or stack-run coding is equivalent at 32 and 40 kbit/s, which
is not the case at 24 kbit/s, where slightly more artefacts were noted
for the bit plane coding version. Further work will be needed to
address important issues, such as pre-echo reduction and noise in-
jection/substitution, so as to minimize musical noise and pre-echo at
16 and 24 kbit/s.

4.3. Memory requirements and computational complexity

The proposed bit plane method requires no storage of coding ta-
bles (i.e. table ROM), like stack-run coding [13] and model-based
bit plane coding [11]. Furthermore, the method proposed here has
a computational complexity equivalent to that of stack-run coding.
This is a differentiating factor compared with the model-based bit
plane coding in [11], which involves estimating probability model
parameters and calculating integrals; the computation load in [11]
can be quite high and depends on the number of bit planes to be
coded. The computational complexity of the proposed coder may

be reduced by exploiting the embedded nature characteristic of bit-
plane coding (setting fixed step size and using partially encoding bit
planes).

5. CONCLUSION

In this paper we proposed a new method of bit plane coding which
makes use of two-pass arithmetic coding with 5 symbols (+, -, 0, 1,
EoP) including a special “End of Plane” symbol. Using a predictive
transform coding framework for signals sampled at 16 kHz, the pro-
posed coder was compared with stack-run coding [13], and model-
based bitplane coding [11]. It was shown that the resulting objective
performance from 16 to 40 kbit/s is very close to the non-embedded
reference method (stack-run coding), despites the additional feature
of bitstream scalability. Subjective quality results confirmed these
findings at 32 and 40 kbit/s. However, at 24 kbit/s the actual qual-
ity difference appeared to be more pronounced, which requires fur-
ther work on important aspects such as noise injection/substitution
or pre-echo reduction. This paper focused mainly on entropy coding
efficiency.

Note that the proposed method may be applied to image or video
coding, though some parts such as the “End of Plane” symbol are
tuned for transform coefficients of audio signals.

REFERENCES

[1] S. Ragot and al., “ITU-T G.729.1: An 8-32 kbit/s scalable
coder interoperable with G.729 for wideband telephony and
Voice over IP,” in Proc. ICASSP, April 2007.

[2] Y. Hiwasaki and al., “G.711.1: a wideband extension to ITU-T
G.711,” in EUSIPCO, Aug. 2008.

[3] T. Vaillancourt and al., “ITU-T EV-VBR: a robust 8-32 kbit/s
scalable coder for error prone telecommunications channels,”
in EUSIPCO, Aug. 2008.

[4] B. Geiser, S. Ragot, and H. Taddei, “Embedded Speech Cod-
ing: From G.711 to G.729.1,” in Advances in Digital Speech
Transmission (R. Martin, U. Heute, C. Antweiler, eds.), chap-
ter 8, pp. 201–248. Wiley, Jan. 2008.

[5] S.H. Park and al., “Multi-layer bit-sliced bitrate scalable audio
coding,” in AES 103rd Convention, Aug 1997.

[6] R. Yu and al., “MPEG-4 scalable to lossless audio coding,” in
AES 117th convention, 2004.

[7] C. Dunn, “Efficient audio coding with fine-grain scalability,”
in AES 111th convention, Sept. 2001.

[8] J. Li, “Embedded audio coding (EAC) with implicit auditory
masking,” ACM Multimedia 2002, Dec 2002.

[9] D. Taubman, “High performance scalable image compression
with EBCOT,” IEEE Trans. on Image Proc., vol. 9, pp. 1158–
1170, July 2000.

[10] H. Radha, M. v.d. Schaar, and Y. Chen, “The MPEG-4 fine-
grained scalable video coding method for multimedia stream-
ing over IP,” IEEE Trans. Multimedia, vol. 3, Mar. 2001.

[11] T.M.N. Hoang, M. Oger, S. Ragot, and M. Antonini, “Em-
beddedd transfrom coding of audio signals by model-based bit
plane coding,” in Proc. ICASSP, Apr 2008, pp. 4013–4016.

[12] M.J. Tsai and al., “Stack-run image coding,” IEEE Trans. Cir-
cuits Syst. Video Techno., vol. 6, pp. 519–521, October 1996.

[13] M. Oger, S. Ragot, and M. Antonini, “Transform audio coding
with arithmetic-coded scalar quantization and model-based bit
allocation,” in Proc. ICASSP, 2007, vol. 4, pp. 545–548.

[14] ITU-T Rec P.862.2, Wideband extension to Recommendation
P.862 for the assessment of wideband telephone networks and
speech codecs, Nov 2005.

[15] ITU-T G.722.1, Coding at 24 kbit/s and 32 kbit/s for Hand-free
Operations in Systems with Low Frame Loss, 1999.

4140

