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Abstract 
The increasing heterogeneity of communication networks and the 
variability in user requirements form a challenge for source cod­
ing algorithms. To address this challenge, the aim of the Flex­
Code source coding approach is to create a speech and audio 
coder that can adapt instantaneously to network and user require­
ments. The approach is based on a statistical description of the 
source, a model of perception, and analytic relations between bit 
rate, distortion, packet-loss rate, and the reconstruction-point dis­
tribution density of the quantizers. The method facilitates ana­
lytic optimization of the source coder for given network and input 
signal conditions and user requirements at any time. Preliminary 
results confirm that the flexibility in rate and robustness can be 
obtained without a loss in performance compared to state-of-the­
art coders optimized for particular conditions. 

1 Introduction 
The transmission of audio-visual signals plays a central role in 
modem society. Scarcity in bandwidth and the loss and damage 
of transmitted information have led to the introduction of source 
and channel coding algorithms. To maximize performance, spe­
cific algorithms have been defined for various applications. This 
has led to a proliferation of coding standards. While each al­
gorithm generally performs well for the environment that it was 
designed for, the algorithms usually perform poorly under other 
circumstances. For example, many speech-coding algorithms use 
large codebooks that were obtained with off-line learning. Such 
codebooks do not perform well for music. Existing algorithms 
are not easily adapted to new applications with different con­
straints on quality, bit rate, delay, complexity, and packet robust­
ness. If an environment varies as a function of time, the lack of 
flexibility is a severe handicap leading to low performance. 

The main objective of FlexCode is to develop a coding 
paradigm that is inherently flexible. The resulting coding algo­
rithm can adapt instantaneously to application constraints set by 
the users and the network environment. That is, the coder imme­
diately optimizes its configuration for any particular combination 
of overall rate, packet loss rate, and bit error rate. The coder is 
layered to allow dropping of bits at less capable terminals or in 
network bottlenecks and has modest computational and memory 
requirements. To facilitate optimal performance, the coder makes 
use of sophisticated perceptual criteria. 

A secondary objective of FlexCode is to validate the 
paradigm using a practical implementation that is applied to real­
world scenarios. Thus, a real-time implementation of the coding 
algorithm is being developed for speech and audio signals. The 
implementation is to be compared with the performance of state­
of-the-art systems at transmission rates of 10 to 30 kb/s. 

In this paper, we first outline the architecture of the FlexCode 
source coder. We then discuss some specific advances that were 
developed to realize the paradigm, including methods that make 
the the coder robust against packet loss, and finally provide some 
initial experimental results. 

lThis work was supported in part by the European Union under Grant 
FP6-2002-IST-C 020023-2 FlexCode 

2 FlexCode Source-Coding Approach 
The FlexCode approach facilitates flexible and efficient source 
coding at relatively low rates. Fundamental to the approach are 
the usage of the source and perception models. Conventional 
speech coders generally rely both on modeling and on the train­
ing of quantizers using a data base and are aimed at a particular 
coding rate. Important knowledge about the signal is stored in 
codebooks. Audio coders generally rely less on signal models 
and perform less well at low rates. In contrast, in the FlexCode 
approach source models are specified based on data and (asymp­
totically) optimal quantizers are computed based on these source 
models and on models of perception. The inputs to the quantizer 
computation are the rate (or quality) required and the parameters 
of the probabilistic source model and the model of perception. 

2.1 The Signal Model 
In FlexCode the audio signal is specified by a sequence of random 
vectors Sn with realization Sn, where n is a time index. The vec­
tors snare sequential segments of the signal, signal vectors after 
removal of a suitable zero-input response of a filter, or successive 
vectors of coefficients of a lapped transform. In the simplest case, 
the vectors Sn are modeled as independent. The distribution for 
the vectors is modeled by !sle(sI9) where E> describes the pa­
rameters of the signal model and where we omit the time index 
for convenience. A convenient generic model for !sle(slE» is the 
ubiquitous mixture model: 

!slo(slE» = L. PI(i)gsle(sI9i), iEY' 
(1) 

where gSle(sI9i) is the distribution of component i, and PI(i) is 
the component probability. In FlexCode we use the Gaussian 
mixture model with zero-mean Gaussians. This implies that the 
components can be written as 

where R(9) is the model covariance matrix for S. If we use the 
commonly used autoregressive (AR) signal model, then R(9) is 
determined by the AR model parameters 9. Assuming that a good 
signal model is a model that minimizes the required rate to encode 
the signal, we showed in (cf. section 3.1) that for optimal AR 
modeling of the speech at 8 kHz sampling rate about one million 
components are required. 

For speech it is natural to associate the components of the 
mixture model (1) with a particular configuration of the vocal 
tract. Only one component is active in each vector s. For audio 
signals this is less natural as composite sounds will occur. If the 
kernel densities gSle(sI9i) are approximated as not overlapping, 
then each vector s corresponds to a particular mixture component. 
While the mixture model description of the signal is not common 
in speech and audio coding, the commonly used linear-prediction 
algorithm in speech and audio coding is consistent with a mixture 
model with nonoverlapping components. 
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2.2 Quantization and Lossless Compression 
The AexCode approach is to compute the quantizer for the vec­
tor S from the signal model. In the early version of the AexCode 
coder the signal is quantized using scalar quantizers. To max­
imize the efficiency of scalar quantizers, dependencies between 
the vector components must be minimized. Let us assume an 
unweighted squared error distortion measure (which will be mo­
tivated in section 2.3) and a multi-variate Gaussian signal model. 
Dependencies between vector components can then be eliminated 
without affecting the distortion measure by performing the uni­
tary transform on the signal vector S that diagonalizes its covari­
ance matrix. The diagonalizing transform is the Karhunen-Loeve 
transform. In the AexCode approach, we diagonalize the covari­
ance matrix of the signal model [1], which is known to both en­
coder and decoder. 

The base-line AexCode system facilitates both entropy­
constrained and resolution-constrained quantization of the signal. 
The optimal entropy-constrained quantizer is uniform and the sig­
nal probability density forms an input to lossless coding. An 
arithmetic coder is employed for the entropy-constrained case. 
The constrained-resolution quantizer is implemented by means 
of companding. 

As the covariance matrix is specified by the signal model, 
the Karhunen-Loeve transform is known to both encoder and de­
coder. Assuming the signal model is accurate, the loss in coding 
efficiency of a scalar quantizer relative to a vector quantizer [2] 
(asymptotically with high rate) is reduced to the space-filling ad­
vantage (less than 1.5 dB) and the shape advantage (constrained­
resolution only) of vector quantization. 

The AexCode approach has a theoretical performance advan­
tage over the ubiquitous code-excited linear prediction (CELP) 
algorithm [3]. CELP is based on a signal codebook that is stored 
in a so-called "excitation" domain and then shaped with the AR 
filter corresponding to the segment. This means that the geom­
etry of the CELP quantizer cells is generally not optimal. This 
advantage of the AexCode approach was discussed in [4]. 

2.3 Distortion Measure 
AexCode supports the use of sophisticated distortion measures. 
The current approach facilitates any distortion measure represent­
ing human perception d(s,y) that can be approximated as locally 
quadratic. Then we have that 

d(s,y) � (s-yfM(s)(s-y), (3) 

where M(s) is the so-called sensitivity matrix [5]. 
The AexCode approach assumes that a distortion measure d(s,y) can be represented by an invertible mapping (compressor) 

F (.) to a "perceptual domain" where the distortion measure is the 
squared error. The quantizer operates in the perceptual domain. 
The reconstructed signal Y then consistes of the inverse mapping 
of the quantized signal: 

S ---7 F(·) ---7 Q(.) ---7 r\) ---7 Y. (4) 

It has been shown that, under certain conditions and for high di­
mensions and low distortions, this quantization procedure can ap­
proach the rate-distortion limit arbitrarily closely for the case of 
constrained-entropy quantization [6]. It was also shown that the 
optimal compressor satisfies F' (s) T F' (s) = eM (x) where e is a 
scalar and where F'(s) is the Jacobian of F(·). 

Using the sensitivity matrix approach, two distortion mea­
sures have been implemented in AexCode. The distortion mea­
sure described by [7] is simpler to implement but only considers 
frequency domain effects. The distortion measure described by 
[8] requires a larger computational effort but incorporates both 
time and frequency domain effects. 

The assumption that human perception can be approximated 
as locally quadratic leads to problems at lower rates. The human 
auditory system is sensitive to the appearance and disappearance 
of spectral holes in successive signal segments. Such holes are 

a natural result of so-called reverse waterfilling, which is a con­
sequence of usage of the squared-error distortion measure at low 
rates. AexCode is working on a distortion measure that is a com­
bination of a locally quadratic and a power-spectral error based 
criterion to resolve this problem in an elegant manner. 

2.4 Audio Coding Architecture 
Based on the principles described in sections 2.1, 2.2, and 2.3, the 
source coding architecture shown in Fig. 1 was developed. The 
coder facilitates implementation based on the Karhunen Loeve 
transform and on the modulated lapped transform (MLT). In this 
description, we focus on the first implementation. The signal is 
first subjected to segmentation (the segments may overlap). The 
AR model is then estimated from the signal segment and quan­
tized. For a particular input signal environment, a AexCode re­
sult (cf. section 3.1) is that the optimal coding rate of the model 
is independent of the overall rate, and so it is possible to use a 
codebook for this quantizer. However, if the coder is to be used 
for different input signal environments, then codebooks are not 
desirable. Thus, in the current AexCode implementation, scalar 
and lattice (cf. section 3.2) quantizers are used for quantization 
of the AR model. 

Based on the sequence of estimated signal models, the Jaco­
bian F' (.) of the perceptual model is computed and this Jacobian 
is used to weight the incoming signal segment. 

For the spectral distortion measure [7], the Jacobian F' (s) is 
Toeplitz and the weighting is implemented by a filtering opera­
tion, resulting in a pre- and post-architecture similar to that of [9] 
but with a different method for computing the weighting filter. 
The spectral weighting method is followed by a subtraction of 
the zero-input response of the signal model, which renders a se­
quence of largely independent signal vectors Sn. After the com­
putation of a composite model that accounts for the weighting 
and for the subtraction of the zero-input response, the Karhunen­
Loeve transform is performed on these vectors, rendering a set of 
coefficients that form the input to scalar quantizers that are op­
timal for the signal model (under high-rate assumptions). The 
quantizers can be constrained-entropy or constrained-resolution 
quantizers. The quantizer indices are coded using arithmetic cod­
ing in the case of constrained-entropy quantization. 

The audio-coding architecture includes a pitch model (single­
tap AR model). For this model the delay (tap location) is ad­
justed closed-loop based on minimizing the residual remaining 
after subtracting the zero-input response. 

At the decoder the quantized values are decoded and the in­
vertible signal processing steps inverted. 

The delay of system of Fig. 1 is mostly determined by the 
segment length and by the requirement. The segment length is 
determined by the duration over which the input signal is mod­
eled well by a stationary AR model. Typical segment lengths are 
5 to 10 ms. A related coder with a delay of only a few samples, 
facilitated by backward adaptation of the signal model, was de­
scribed in [10]. 

3 Specific FlexCode Technologies 
To realize the flexibility envisioned in the AexCode paradigm 
and to maintain state-of-the-art performance for any particular 
coder configuration, new technologies and improvements to ex­
isting technologies were needed. In this section we highlight a 
number of these technologies. 

3.1 Rate Distribution 
In the coding system envisioned by FlexCode, the rate is an ad­
justable parameter. This means that one must find an optimal 
balance between the rate for the quantization of the signal model 
parameters and the rate for the quantizers that operate directly 
on the signal, with knowledge of the quantized signal model for 
each condition for which the coder is optimized. We have shown 
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Figure 1: The source-coding architecture of FlexCode. 

[11, 12] that the optimal rate distribution follows a simple asymp­
totic rule that is easily implemented in a practical coding system. 

The optimal distribution of rate between the model and the 
signal can be obtained using a method that is closely related to 
the minimum-description length principle [13]. The total rate 
used for encoding the signal can be separated into three rate com­
ponents: i) the rate for the signal using the ideal (unquantized) 
model ii) the rate for the quantized model, and iii) the penalty 
term: the increase in the rate for the signal because the model 
is not the ideal model. The optimal rate distribution is gov­
erned by the rate components ii and iii. We have solved the 
problem for the squared-error distortion measure and both the 
constrained-entropy and the constrained-resolution cases. For the 
constrained-entropy case, the signal rate for a given model is 

(S) 

where k is the dimensionality of s, D is the distortion, and C is a 
constant, the coefficient of quantization. 

It is seen from (S) that the difference between the rate for the 
signal given the ideal model and the rate for the signal given the 
quantized model depends only on the ratio of their likelihoods 
and not on the distortion (which cancels). This immmediately 
implies that the rate for the model is independent of the overall 
distortion D and, thus, the overall source-coder rate. 

We have worked out the results for the case of the AR model. 
Based on (2) and (S) the penalty term iii can be related to log 
spectral distortion. The rate required for the model can be re­
lated to the differential entropy of the model parameters in the 
log spectral domain. We can then create an expression for the 
optimal rate for the model. For 8 kHz sampled speech and using 
20 ms segments, this rate is 20 bits and 1.3 dB spectral distortion. 
This result justifies older empirical estimates of what is a "trans­
parent" log spectral distortion level for coding (about 1 dB, [14]), 
and the corresponding rates a bit allocation of l8-2S bits/second 
(e.g., [14, IS]). 

3.2 Lattice Quantization 
For the squared-error criterion and constrained-entropy quantiza­
tion, and under the high-rate assumption, optimal rate-distortion 
performance is reached by a uniform quantizer at any dimen­
sionality. This suggests the use of lattice quantization, which 
can provide optimal quantizer cell shapes (e.g., [2]) and leads 
to low quantizer computational complexity. The computational 
advantage has meant that lattice quantization is also used for 
constrained-resolution quantization, using companding to obtain 

a uniform distribution. (In general, in this context companding is 
not rate-distortion optimal for a dimensionality higher than one.) 

The use of lattice quantizers depends on the existence of an 
indexing algorithm for the lattice points. This generally involves 
the need for lattice truncation. Within the context of FlexCode 
we have developed new indexing algorithms that use generalized 
rectangular lattice truncations. The methods lead to effective cod­
ing for mixture models and companded lattice quantization. 

At moderate bit-rates (below 2 bits per sample), for non­
symmetric sources and singular data, lattice border effects are 
significant and the rate distortion curves depend on the orienta­
tion of the lattice truncation. Lattice rotation such that the denser 
direction corresponds to the denser direction in the data results in 
improved performance. Thus, significant improvement of perfor­
mance has been observed for correlated data [16]. The method 
is expected to lead to a significant improvement in the coding 
efficiency of transform coefficients of the FlexCode coder. 

3.3 Bit-Stream Scalable Coding 
Bit-stream scalable coding, also known as embedded coding, en­
compasses all coding methods that facilitate the progressive drop­
ping of bits from the coded bit stream without significant impair­
ment of the coding efficiency at the various resulting (decoding) 
rates. It is well-known that for certain signals and distortion mea­
sures, including Gaussian signals with the squared-error distor­
tion measure, rate-distortion optimal successive refinement (iter­
ative improvement of the coded approximation) is possible [17] 
and this motivates us to study embedded coding in the context of 
the FlexCode source coder [18], [19]. 

The bit-stream scalable coding integrates in the constrained­
entropy scalar quantization of the transform coefficients of the 
FlexCode coder. The pre-processed transform coefficients are 
modeled as independent identically distributed (iid) variables, 
and are uniformly quantized. The coefficient distribution model 
is an adaptive generalized Gaussian distribution that can describe 
a range of distributions including Gaussian and Laplacian. The 
sign and the absolute value of the coefficients are separated. The 
sign bit is transmitted only if the amplitude is nonzero. The 
bits of the quantization indices are arranged in bit planes and the 
planes are coded from most-significant bit to least-significant bit 
using arithmetic coding. To obtain efficient encoding, the arith­
metic coder considers in the encoding of a bit of coefficient i in 
a particular bit plane j, the values of the already decoded bits 
for that coefficient in bit planes k > j, as well as the generalized 
Gaussian distribution that applies to the coefficient. Our exper­
imental results [19] indicate that the new model-based bit-plane 
coding method matches the performance of conventional coding 
schemes that do not have bit-stream scalability. 
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3.4 Scalable Multiple Description Coding 
The FlexCode source coding paradigm aims to provide efficient 
and robust transmission over a packet network with an arbitrary 
and possibly time-varying packet loss rate. Multiple-description 
coding (MDC) is a general method used to combat the effects 
of packet loss by introducing redundancy and exploiting diver­
sity offered by the network [20]. Feedback information about the 
packet-loss rate is generally present and can, at least in principle, 
be utilized to determine the optimal redundancy for adaptive cod­
ing. However, state-of-the-art MDC schemes are generally not 
suited to applications where the channel varies, since severe de­
sign complexity or significant storage requirements prevent adap­
tive coding. 

We have developed quantization-based MDC techniques that 
have low-design complexity and are scalable in both redundancy 
and rate. One method is an adaptive MDC for a two-description 
scalar setup that can achieve optimality for both the constrained 
entropy and constrained resolution case, for any packet-loss rate 
[21]. Systems that allow an arbitrary number of descriptions and 
that allow optimization of the number of descriptions are in an 
advanced stage of development. 

A quantization-based MDC scheme consists of one central 
and number of side quantizers with an invertible mapping from 
the central codebook to the side codebooks. The main design 
complexity is associated with optimization of this mapping. The 
FlexCode two-description scalar MDC method is based on the 
use of predefined, parameterized mapping algorithms (so-called 
index-assignment schemes). The parametrization forms the ba­
sis for the analytic optimization of the MDC configuration. This 
scalable, two-description quantization-based MDC scheme will 
be used for the transform coefficients of the FlexCode coder. 

4 Performance 
While the FlexCode source coder is evolving rapidly, some pre­
liminary performance results can be provided. The results only 
relate to source coding and not to robustness against packet loss. 
The coder was subjected to formal testing using the MUSHRA 
procedure on four music items, six speech items, three mixed 
speech and music items, and four noise speech items, at rates of 
14, 24, and 32 kb/s. The items ranged from 4 to 25 seconds in 
duration. As a reference the AMR-WB [22] and ITU 0.729.1 
standards were used. The test was performed in professional lab­
oratories at Ericsson (6 listeners), Nokia (12 listeners) and Or­
angelFT (10 listeners). The test results were consistent across the 
laboratories and across the items. At 24 kb/s the FlexCode coder 
performed similar to the reference coders. At 32 kb/s the Flex­
Code coder performed better than the reference coders. At 14 
kb/s the performance is worse than that of the AMR-WB coder. 
The latter result is related to a problem with the implementation 
of the pitch predictor. Overall the results indicate that scalable 
coding does not imply a loss of performance. 

5 Conclusion 
From the current results of the FlexCode project we conclude that 
practical scalable audio coding without loss of performance com­
pared to state-of-the-art audio coders designed for a particular 
coding rate is possible. Embedding based on newly developed 
bit plane coding techniques facilitates the stripping of bits in the 
coded bit stream, which is particularly useful for multicast sce­
narios. New methods for scalable multiple-description coding 
allow coders to adapt instantaneously to any packet loss rate. 
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